Radiocarbon as a tracer for the source and fate of fossil fuel CO₂ emissions

SIENCE

TE PŪ AO

Jocelyn Turnbull Rafter Radiocarbon Lab, GNS Science, New Zealand and University of Colorado, Boulder, USA

Nikita Turton, Lucas Domingues, and the Rafter Radiocarbon Team Ken Davis, Natasha Miles, Scott Richardson, Anna Karion, Isaac Vimont

Outline

- Introduction
- Tracing fossil fuel CO₂ (CO₂ff) with radiocarbon
 - Indianapolis example
- The Great Greenhouse Gas Grass-off
 - Covid-19 related CO₂ff emission reductions in New Zealand

All nations have committed to reducing their greenhouse gas emissions

The Paris Agreement

Nations Unies

COP21/CAMP11

Paris, France

onférence sur les Changements Climatiques

01-12 NOV 2021 **GLASGOW**

COP**26**

Australia's Nationally Determined Contribution COMMUNICATION 2020

United Nations

Framework Convention on Climate Change

Cities are often leading the way in emission reduction efforts

carbonn[®] Climate Registry 5 Year Overview Report (2010 - 2015)

Policy *decisions* may be at national level Policy *actions* are largely at the local level Urban areas produce ~75% of all GHG emissions Co-benefits of reduced emissions: Cleaner air, reduced traffic congestion, improved energy security Emissions information is needed at the city scale

The Carbon Cycle

Land and ocean sinks remove about half of all fossil fuel derived CO_2 from the atmosphere

Detecting urban CO_2 ff emission rates is challenging with CO_2 measurements alone

Long-term CO_2 trend due to global fossil CO_2 additions

Seasonal cycle due to photosynthesis and respiration

Local fossil fuel CO₂ signal is difficult to isolate

Urban biogenic (CO₂bio) fluxes

Hardiman et al., 2017

Urban biogenic fluxes are understudied Can be substantial even in urban core Variable seasonally and diurnally

Urban biogenic (CO₂bio) fluxes

Los Angeles

Auckland

CO₂bio contribution varies seasonally and diurnally Seasonality can be surprising

Radiocarbon (¹⁴C) dating

¹⁴C is produced naturally in the atmosphere, and moves throughout the carbon cycle

Natural radioactive decay removes ¹⁴C from buried/dead objects

Half-life 5,730 years

Fossil fuels are entirely devoid of ¹⁴C

Wellington ¹⁴CO₂ record 1954 – present

Wellington ¹⁴CO₂ record 1954 – present

Wellington ¹⁴CO₂ record 1954 – present

Wellington ¹⁴CO₂ record 1954 – present

The Radiocarbon Cycle

Modern global surface distribution of radiocarbon

Fossil fuel CO₂ emission pattern very strongly reflected in Δ^{14} CO₂

$$CO_{2} ff = \frac{CO_{2obs} (\Delta_{obs} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}} - \frac{CO_{2r} (\Delta_{r} - \Delta_{bg})}{\Delta_{ff} - \Delta_{bg}}$$

Turnbull et al., 2009 LMDZ model 2002-2007 surface $\Delta^{14}CO_2$

Evaluating urban CO₂ff emissions Indianapolis Flux Project (INFLUX)

INFLUX : Flask-based estimates of total CO_2 , CO and CO_2 ff

 $CO_2 ff = \frac{CO_{2obs}(\Delta_{obs} - \Delta_{bg})}{(\Delta_{ff} - \Delta_{bg})} - \beta$

 $CO_2xs = CO_2obs - CO_2bg$

 $CO_{xs} = COobs - CObg$

Determine enhancements relative to upwind background Tower One Consistent enhancements in anthropogenic species at downwind towers

Flask-based emission ratios

Determine how much of the CO₂ comes from fossil fuels and how much from other sources (plant photosynthesis/respiration, human/pet respiration, biomass burning) ~10% contribution of non-CO₂ff to CO₂ in winter

CO co-emitted with CO₂ff at variable rate depending on combustion conditions - derive ratio empirically from observations Can then use high resolution CO observations to determine CO₂ff

Urban mass balance from aircraft measurements

Many cities can be measured using a single aircraft/instrument Whole city flux determined – not spatially resolved

Heimburger et al., 2017

Urban mass balance from aircraft measurements

Determine CO₂ and CO emission rates from mass balance

Urban mass balance from aircraft measurements

	Emission rate (mol/s)
CO ₂	14,600 ± 17%
CO	108 ± 16%
CO ₂ ff from CO/ ¹⁴ C	13,400 ± 16%

Determine CO₂ and CO emission rates from mass balance

Use ¹⁴C-based CO:CO₂ff to calculate Indianapolis' CO₂ff emission rate

> Heimburger et al., 2017 Turnbull et al., 2019

The Great Greenhouse Gas Grassoff

Bored kids collecting grass clippings during lockdown help reveal dramatic cuts to carbon emissions

stuff.co.nz

Olivia Wannan · 05:00, Aug 20 2020

Citizen science campaign to collect grass samples during lockdown

Plants use photosynthesis to absorb CO₂ from the air and use it to grow

The radiocarbon content of that CO_2 is faithfully recorded in the leaves

Can determine the average CO₂ff content the air for the growth period of the leaf

Great Greenhouse Gas Grassoff

441 participants signed up

Grass samples received from 110 citizens including lots of children

Selected sites with ~weekly samples through Level 4 to Level 1

Screening for sample quality

Screening for sites with detectable CO₂ff signals

17 sites with usable data in five cities

Measurement method

Spatial extent of sampling methods

Spatial extent of sampling methods

Aircraft at high altitude and/or downwind have a footprint that covers all/most of a city Towers can see all or part of a city depending on location and height

Spatial extent of sampling methods

For low growing grass is most strongly influenced by emissions within 20 m Stronger wind reduces overall atmospheric mixing ratio = Roadside samples see local traffic

Wellington roadside grass samples

Clear change in CO₂ff concentration from Level 4 to Level 1

Cannot evaluate absolute emissions

Can evaluate the change in emissions

Not all sites give usable results Clean air sites

No substantial local CO₂ff source

Still useful to diagnose "background"

Not all sites give usable results Sites further from large sources

CO₂ff signal observed but small

Uncertainties too large to be meaningful

Not all sites give usable results Sites with high variability

High week-to-week variability even during Level 1 when traffic emissions should be roughly constant

Meteorological variability and/or intermittent sources dominate week-toweek variability

Exclude sites with high variability in Level 1 from analysis

Wellington roadside grass samples

Clear change in CO₂ff concentration from Level 4 to Level 1

Subtle differences depending on location

Wellington roadside grass samples

Auckland grass samples

Much smaller emission drop at central Auckland site

Observed Changes in CO₂ff Emissions

Our atmospheric observations -75% average drop in CO₂ff during Level 4 Central Auckland sites have smallest emission decreases

Observed Changes in CO₂ff Emissions

Our atmospheric observations -75% average change in CO₂ff during Level 4 Central Auckland sites have smallest emission decreases

Apple mobility data

Typically overestimates the drop in emissions -81%

Waka Kotahi/NZ Transport Authority traffic counts

Consistent with observed CO₂ff -75% But less spatial information available

CarbonWatch-Auckland

Conclusions and ongoing work

Radiocarbon is readily used to determine recently added fossil fuel CO_2 into the atmosphere

Emission rates for urban and other areas can be evaluated to improve emission reporting and mitigation action

Traffic emission decreases of 75% during Level 4 lockdown from 17 sites across 5 New Zealand cities, consistent with traffic data

-suggests that future decoupling of traffic and emissions could be readily tracked with ¹⁴C

Nuclear bias

Fossil fuel-derived CO₂ and Δ^{14} C gradients 84 δΔ_# (permil) °SC_{ff} (ppm) -22 NWR -34 a. c. -45 -48 Nuclear Δ^{14} C gradients and potential bias in fossil fuel-derived CO₂ المتأدالم δΔ_{nuc} (permil) β_{nuc} (ppm) 2.8 1.4 -0.5 -0.25 0.7 d. f. e Absolute ratio of nuclear bias to fossil fuel-derived CO. 262 84 90 g β_{nuc}: δC_# (%) WLG NWR g. h. ١.

Graven and Gruber, 2011

¹⁴C emitted from some types of nuclear power plant can cause an underestimate of CO₂ff

Christchurch Grass Sampling

Similar to results for Wellington

Rural Canterbury road shows more modest change

ter de termente en el termente en el

Hamilton and Gisborne

Two sites show 70-80% emission drops, similar to Wellington and Christchurch

Peachgrove Rd Hamilton shows more modest drop in emissions during Level 4

