

City emission inventories – state of the art and challenges Speakers: Ingrid Super (TNO), Olivier Perrussel (Airparif), Dominik Brunner (EMPA)

SCHEDULE

9.00-9.05 am ICOS Cities Talk – short introduction

9.05-9.35 am ICOS Cities Talk: City emission inventories

9.35-9.50 am Q&A

PRACTICAL INSTRUCTIONS

- The session will be recorded
- Keep your camera turned off during the presentations, if you do not wish to risk being included in the recording.
- Please keep your microphone muted while the speakers are presenting
- Type your questions in the chat
- Use the "raise hand" option for urgent/immediate questions/problems or during the discussion
- Turn your microphone and camera on to ask questions during the hands-on and QA sessions

UPCOMING TALKS – sign up now!

- 24 November 2021 at 9 am CET
 - Oslo's climate budget a tool to achieve ambitious climate goals Speaker: Astrid Ståledotter Landstad, Climate Agency, City of Oslo

8 December 2021 at 3 pm CET Seeing the tree for the forest: New ways to use eddy covariance to map landscape fluxes Speaker: Ankur Desai, University of Wisconsin-Madison

SIGN UP NOW: www.icos-cp.eu/icos-cities-talks

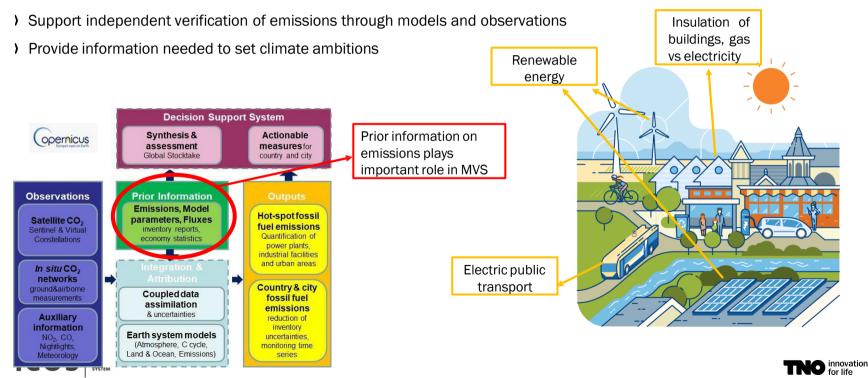
UPCOMING TALKS – sign up now!

- *15 December 2021 at 9 am CET*
 - Surveying attitudes towards climate change and energy preferences Speaker: Diana Zavala-Rojas and Rory Fitzgerald, ESS

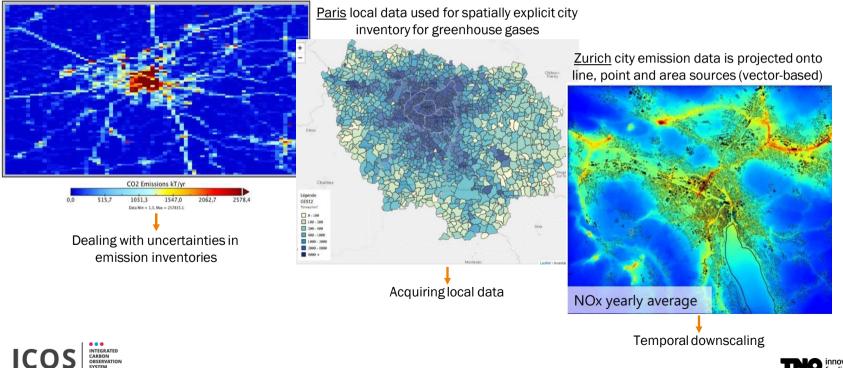
19 January 2022 at 9 am CET **Productive online meetings** Speaker: Jonas Rajanto, Grape People

SIGN UP NOW: www.icos-cp.eu/icos-cities-talks

Talks ICOS Cities


City emission inventories – state of the art and challenges Speaker: Ingrid Super (TNO)

CITY EMISSION INVENTORIES STATE OF THE ART AND CHALLENGES I INGRID SUPER, OLIVIER PERRUSSEL, DOMINIK BRUNNER


INTRODUCTION CITY EMISSION INVENTORIES EXPLAINED

A city emission inventory contains information on the emission landscape of an urban area: how much is being emitted, from which source sectors, where and when?

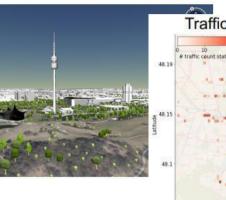
INTRODUCTION THIS PRESENTATION

<u>Munich</u> city-level data is available, but no spatially explicit city inventory yet

BUILDING A STATE-OF-THE-ART CITY INVENTORY FOR MUNICH APPROACH 1: DOWNSCALING REGIONAL EMISSION DATA Officially reported road transport Downscaled road transport Make use of information on buildings to distribute emissions at 1x1 km² emissions at 25x25 m² residential heating emissions to 25x25 m² resolution

-) Advantages
 - Serves as blueprint for other cities using whatever data is available
 - Consistent with national reported emissions and regional inventory outside city boundaries (easy nesting)

) Limitations

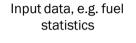

- 10
- Quality could be improved if local data are used
-) Data are still gridded, no line/point sources

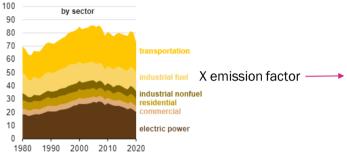
BUILDING A STATE-OF-THE-ART CITY INVENTORY FOR MUNICH APPROACH 2: VECTOR-BASED DISTRIBUTION

3D city model: map emissions onto line, point and area sources

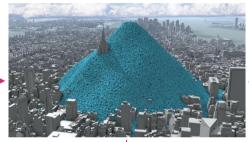
Traffic count (9000 stations, 15 min) Traffic count stators per bin (48.19) (48.19 (48.19)

Make use of local data to further specify spatial and temporal distribution in activities

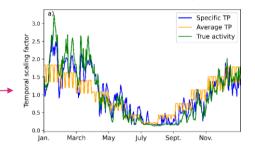

-) Advantages
 - Makes use of local knowledge


- Higher level of detail and improved quality
- Aggregate to e.g. 100x100 m² resolution

-) Limitations
 -) Data may not be available for all source sectors
 -) More difficult to assess uncertainties
 - No consistency with country-level emissions

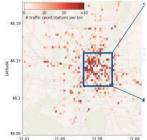


DEALING WITH UNCERTAINTIES SOURCES OF UNCERTAINTY



Total emissions for city

Temporal downscaling


Uncertainties matter, because:

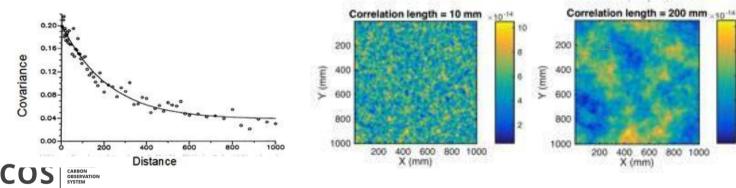
...

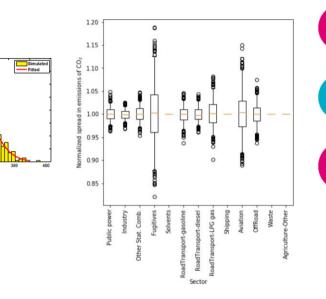
NTEGRATED

CARBON ORSERVATION

- > A good estimate of prior uncertainties is needed for MVS
- They help to estimate the range of possible outcomes from climate actions

Spatial downscaling


11.41 11.49 11.58 Longitude


-) For downscaling often proxies are used:
 - How is relationship between proxies and activity?
 - How accurate is the proxy value?

DEALING WITH UNCERTAINTIES QUANTIFYING UNCERTAINTIES

- Monte Carlo simulation:
 - Advantage: Robust method
 - Requires knowledge on uncertainty distribution input data
 - Good approach to estimate city-scale uncertainties
- > How to deal with spatial and temporal correlations in data and uncertainties?
 - > Error correlation decreases with distance/time
 - Important for MVS studies: pixels contain information on neighbouring pixels

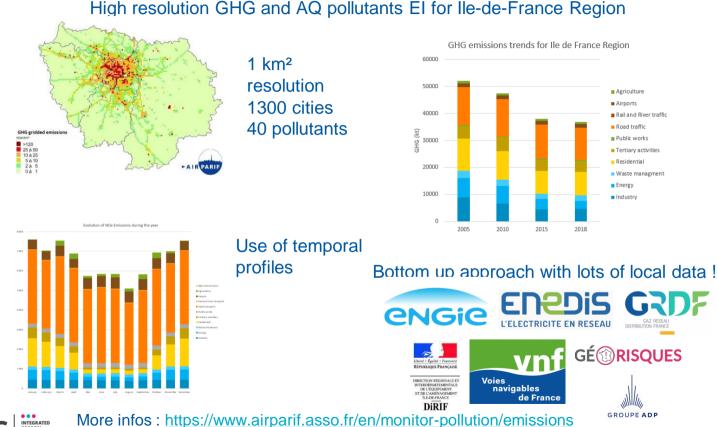
THANK YOU FOR YOUR TIME

CONTACT: INGRID SUPER@TNO.NL

ICOS Cities

City emission inventories – state of the art and challenges Speaker: Olivier Perrussel (Airparif)

STATE OF MULTIP


AIR PARIF

L'Observatoire de l'air en Île-de-France

Cities Emissions Inventories State of the art and challenges Case of Paris

ICOS Talks- Airparif | 2021 November 10th

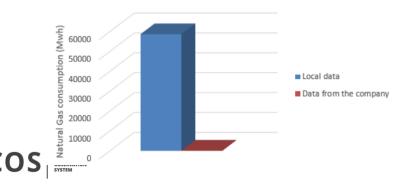
Airparif's EI : 15 years of work !

CARBON OBSERVATION SYSTEM

Use of local energy consumption data (1/2)

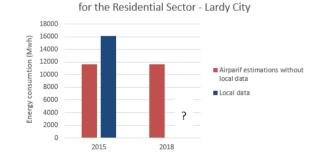
Energy consumption data provided by energy suppliers

Spatial resolution	Activities included	Energy sources
City scale (each of the 20 arrondissements for Paris)	Residential, Industry, Agriculture, Tertiary Activities	Natural Gas, Electricity, Urban heat



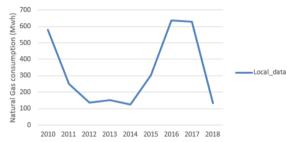
Available from 2011 (2012 Natural Gas) until N-2

A very interesting source of local data with some challenges to overcome :


Incompatibility with other data sources

Natural Gas Consumption for a city (Courtry) -Industry Sector

Dealing with statistical secret


Statistical Secret : Electricity Consumption data

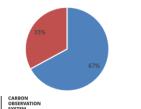
Use of local energy consumption data (2/2)

Challenges for validating historical data

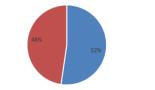
Is it valid or not ? What kind of validation elements can we have ?

Tertiary Activities

Residential

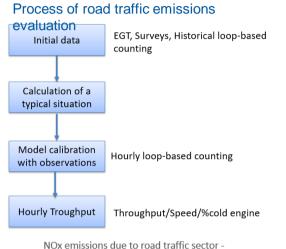


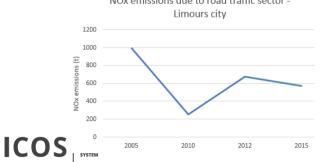
Change in sector scope from one version of data to the next

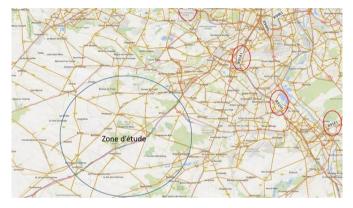

Tertiary Activities

Residentia

Share of Electricty Consumption Data between Resid/Tert Paris Case - Version N


Share of Electricty Consumption Data between Resid/Tert Paris Case - Version N+1




Small office space at the bottom of a residential building was counted « tertiary activities » in the N version

Use of local data for the road traffic sector

Challenges regarding the consistance of historical road traffic emissions

Avaibility of traffic loops near the study area

	2005	2010	2012	2015
MIR91H	Bad	Good	Good	Good
MIR91A	Medium	Good	Good	Good
MIR91E	Medium	Bad	Good	Good
MIR78I	Medium	Good	Good	Bad

Lack of constistance for road traffic emissions due to perturbations concerning the traffic loops avaibility

Use of local data for the tertiary activities

The tertiary sector includes many different activities The number of employees or students (for the education sector) are used for the spatialization of emissions from this sector.

Sub Sector	Database for nbr of employees /sudents	Comments		
Community housing	SIRENE (INSEE) : a very complete BDD (for			
Health and Social	the present) but very expensive and with no			
Offices	past data.	ACOSS, a new database related to employees seems to be a relevant source		
Shops	CLAP : recently stopped	combining completeness and coherent historical data.		
Bars, hotels and restaurants	ASTREE : same as CLAP, recently stopped			
Transport establishments				
Sports and leisure facilities	UNISTATIS : uncomplete database			
Education	Opensource for education ministry : incomplete For each department : Academic Rectorate Academic inspection			

Challenges :

- Difficulties in achieving comprehensiveness (namely for the education sector)
- Compilation of number of employees depends a lot on database
- Having a coherent evolution of employees for each city is a big challenge

ICOS INTEGRATED CARBON OBSERVATION SYSTEM

City emission inventories – state of the art and challenges Speakers: Dominik Brunner (EMPA)

ICOS Cities

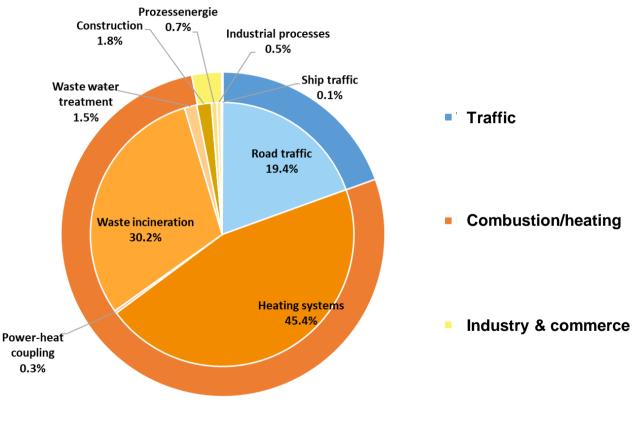
The emission inventory of the city of Zurich

Dominik Brunner

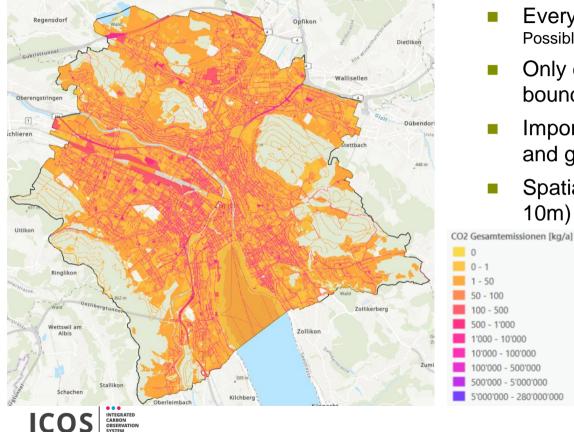
Laboratory for Air Pollution and Environmental Technology Empa, Swiss Federal Laboratories for Materials Science and Technology

Water Channel Opening, Empa Dübendorf, 15 Jun 2018 | dominik.brunner@empa.ch


- Public vote in 2008 to reduce energy consumption per citizen to 2000 Watts and 1 t CO₂ yr⁻¹ by 2050
- Net zero by 2040 for direct emissions (in city)
- -30% by 2040 for indirect emissions (outside city)
- Net zero by 2035 for city administration



ICO


Action plan with 57 actions

- Buildings
 - Energy supply
 - Mobility
 - Spatial planning
 - Consumption

- Every 5 years: 2010, 2015, 2020
 Possibly every 2 years in future
- Only direct emissions within city boundary (Scope 1)
- Important policy tool for air quality and greenhouse gas management
- Spatial resolution (at least 10m x 10m)

- 9 air pollutants: PM₁₀, PM_{2.5}, NO_x, CO, SO₂
 NH₃, VOCs, soot, benzene
- 3 greenhouse gases: CO₂, CH₄, N₂O

65 detailed source categories as line, point or area sources

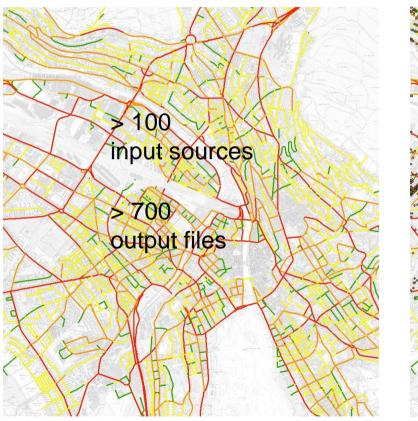
		Wichtigste Datengrundlage	Bottom- up	Top- down
Verkehr	Schiffsverkehr	EF BAFU, eigene Aktivitätsdaten (Fahrplan)	~	
	Schienenverkehr	EF, eigene Aktivitätsdaten (Fahrplan)	~	
	Strassenverkehr	EF BAFU, eigene Aktivitätsdaten	~	
Feuerungen	Öl-/Gas-/Holzheizungen, BHKW	EF BAFU, eigene Aktivitätsdaten (FETA)	✓	
	Kehrichtheizkraftwerke	gemessene Emissionsfrachten	✓	
Industrie & Gewerbe	Baustellen	EF BAFU, eigene Aktivitätsdaten	×	✓
	Notstromanlagen	EF BAFU, eigene Aktivitätsdaten (FETA)	✓	
	Prozessenergie	EF BAFU, eigene Aktivitätsdaten	✓	
	industrielle und gewerbliche Prozesse	unterschiedlich	~	
	Lösemittel	Umlegung CH-Daten		✓
Land- & Forstwirtschaft	Forstwirtschaftliche Fahrzeuge	EF BAFU, eigene Aktivitätsdaten (GSZ)	~	
	Landwirtschaftliche Fahrzeuge	Umlegung BAFU-Jahresfrachten		✓
	Nutzflächen	Umlegung BAFU-Jahresfrachten		✓
	Nutztierhaltung	EF BAFU, eigene Aktivitätsdaten (GSZ)	✓	
Haushalt	Reinigungsmittel, Lösemittel, Spraydosen	Umlegung BAFU-Jahresfrachten		~
	Kleingärten (Grünabfall, Holzöfen)	EF Nussbaumer, eigene Aktivitätsdaten	~	
	Abfallverbrennung in Hausfeuerungen	EF BAFU, eigene Aktivitätsdaten	~	
	Haustiere, Zoo- und Zirkustiere	Umlegung BAFU-Jahresfrachten		√
	Feuerwerke	Umlegung BAFU-Jahresfrachten		✓
	Brand Feuerschäden	EF BAFU, eigene Aktivitätsdaten	✓	
Natürliche Emissionen	Biogene Emissionen	EF BAFU, eigene Aktivitätsdaten	✓	

Traffic

Industry & commerce

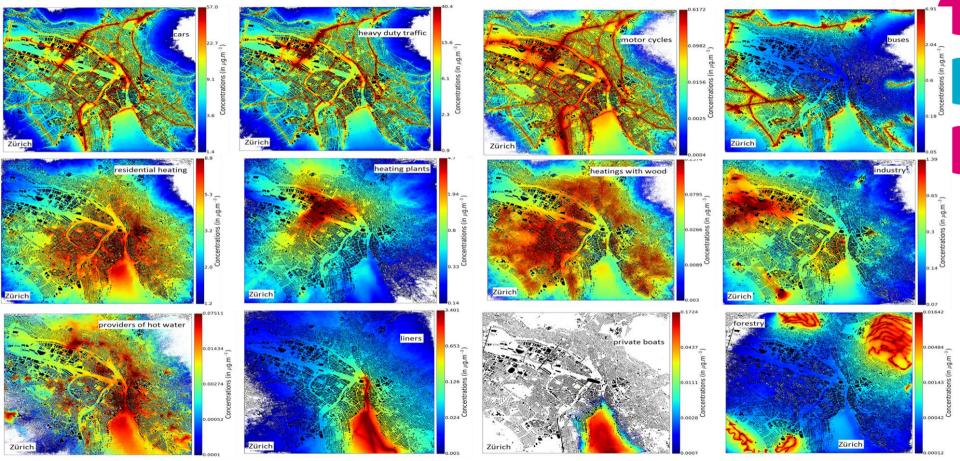
Agriculture & Forestry

Natural emissions

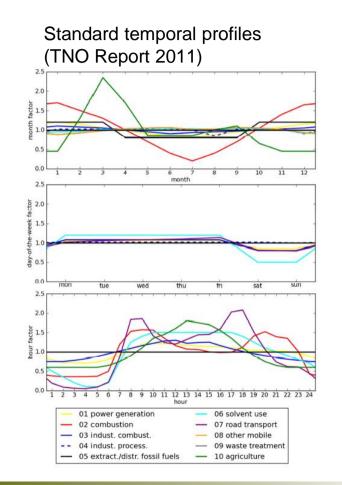


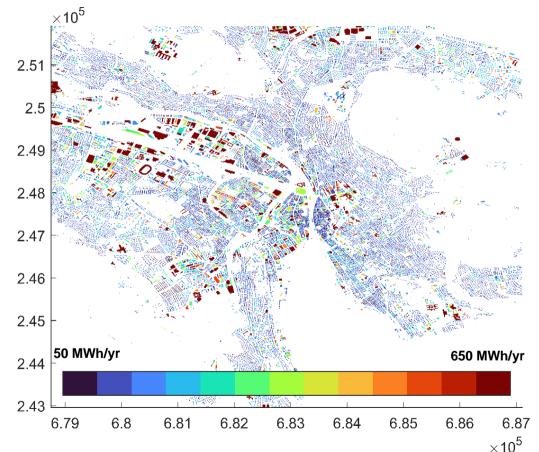
Household, hobby, garden

shutterstock.com • 1595587948


sum of line + point sources gas heating

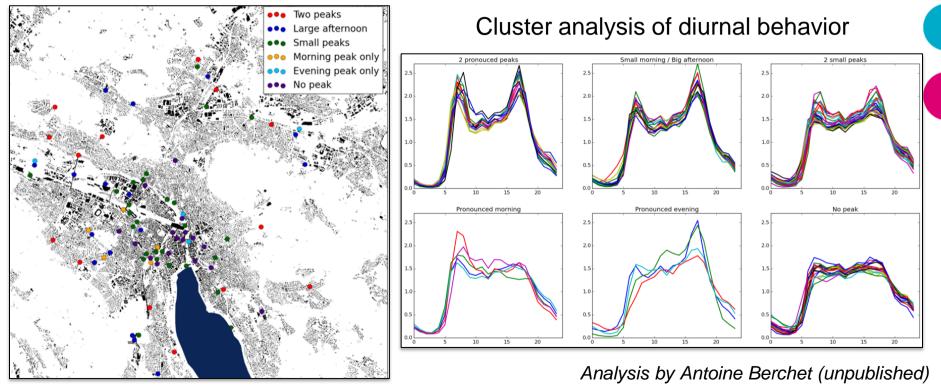
car traffic

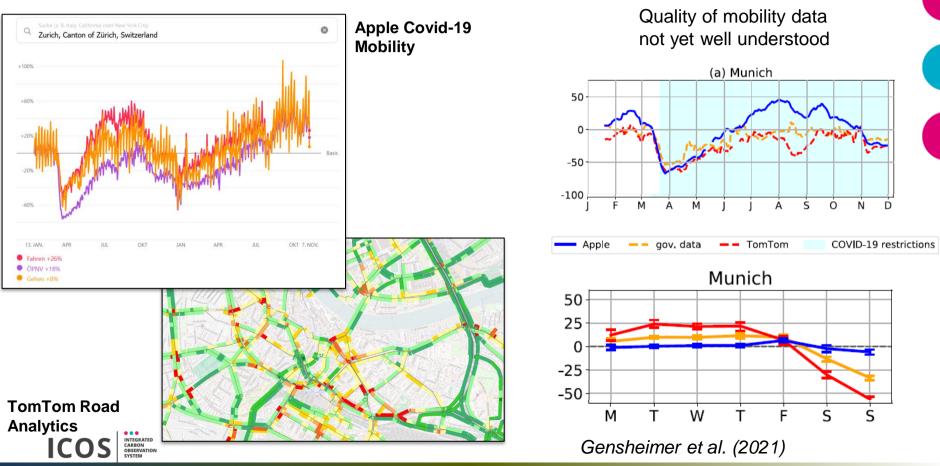

ICOS Cities Seminar Series, virtual meeting, 10 November 2021 | dominik.brunner@empa.ch


Berchet et al. 2017

ICOS Cities Seminar Series, virtual meeting, 10 November 2021 | dominik.brunner@empa.ch

- Temporal disaggreation needed because observations are sensitive to emissions at a given hour
- Examples of temporal variability
 - Traffic morning and evening peaks Reduced on weekends
 - Heating demand affected by weather
 - Industrial emissions affected by holidays




- EnergyPlus model of US DoE
- Detailed data for each building (age, material)
- Hourly simulation per building considering actual temperature, radiation and wind conditions
- Will consider CO₂ emissions from heating systems and from human respiration

Fazel Khayatian & Kristina Orehounig Urban Energy Systems, Empa

~90 traffic counters in Zurich

ICOS Cities Seminar Series, virtual meeting, 10 November 2021 | dominik.brunner@empa.ch

- Extremely detailed inventory for Zurich with line, point and area sources for 9 air pollutants & 3 greenhouse gases for 65 categories
- Inventory is produced by city itself, which has access to detailed statistical data (traffic, heating systems, industrial activities, etc.)
- Spatially explicit inventory is an important planning tool
- Inventory has been used as input for dispersion models
- Uncertainties of inventory not well known
- Spatial and temporal disaggregation is key for atmospheric modelling
- Temporal disaggregation is not available but has to be generated separately, ideally from measured activitiy data

With a special thanks to

City of Zurich Carolin Rösch, Christian Huber, Amewu Mensah

Empa Antoine Berchet, Ivo Suter, Katrin Zink, Lukas Emmenegger Fazel Khayatian, Kristina Orehounig

We want your feedback!

Talks

Cities