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What about flux towers? 
How can they be used to complement urban GHG studies? 



Urban eddy covariance:  Why?
• Same purpose as ecosystem flux towers. 

• Measure fluxes continuously, and at high resolution in space and time.  
• Collect ancillary data required to test process-level understanding.  
• Develop, evaluate and improve process-based flux models that we can then 

extrapolate over space and time.  
• A component of “bottom up.”  
• Merge with “top down” (atmospheric inversions/budgets) to quantify 

city-wide GHG fluxes.
• Aren’t urban systems too complex for flux towers?  No.
• Can we prove it?  Yes.



Objectives / demonstrations.  
And insights as we go into “how” and “where”
• We need to evaluate our process-level understanding of anthropogenic 

GHG emissions (e.g. Gurney et al, 2012) with observations. Wu et al, 
submitted.

• We need to understand urban region ecosystem GHG fluxes.  They 
confound our understanding of anthropogenic emissions (Wu et al., 
2018; Miles et al, 2021), and they are interesting in their own right. 

• Urban ecosystems 
• Rural background

• We can use urban eddy covariance to evaluate the momentum and 
buoyancy fluxes driving urban ABL simulations (Sarmiento et al., 2017).



Penn State / NIST / AmeriFlux urban flux tower network:  
Indianapolis and the NEC

• Urban, Turf Grass, and 
Agricultural sites deployed.  

• MMSF forest data also used.
• Many sites have been 

deployed for limited time 
periods.

• We currently have five flux 
systems in operation.

• Details and applications to 
follow
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Don’t urban atmospheric inversions test 
urban inventories?  Why flux towers?

• Do we use continental inverse models to evaluate our ecosystem 
biogeochemical models?

• We might compare large-area net annual or seasonal fluxes (e.g. SOCCR2), 
but when we want to understand the processes in our ecosystem models, 
we often turn to flux towers. 



Don’t urban atmospheric inversions test 
urban inventories?  Why flux towers?

• Do we use continental inverse models to evaluate our ecosystem 
biogeochemical models?

• We might compare large-area net annual or seasonal fluxes (e.g. SOCCR2), 
but when we want to understand the processes in our ecosystem models, 
we often turn to flux towers. 

• Why flux towers?  High spatial and temporal resolution.  
• Why atmospheric inversions?  They encompass the whole city.



Objectives / demonstrations.  
And insights as we go into “how” and “where”
• We need to evaluate our process-level understanding of anthropogenic 

GHG emissions (e.g. Gurney et al, 2012) with observations. Wu et al, 
submitted.

• Which anthropogenic GHG emissions model?
• Hestia (Gurney et al, 2012) offers 1 km2 resolution, hourly, sector-

specific urban emissions. 
• Hestia has been compared to urban inversions (Turnbull et al., 2019; 

Lauvaux et al, 2020) with very good success.
• The high spatial and temporal resolution, process-level fluxes from 

Hestia have not previously been compared to atmospheric flux 
observations. 



Decomposition of flux measurements: Hestia - EC comparison

Distance to the site (m)
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Flux footprint at tower 2
• Mixed suburban 

environment

• Communications 
tower

• Three-level 
CO/CO2/CH4
profile (10, 40, 
136m AGL)

• Flux 
instrumentation 
at 30 m AGL

• Flux system 
operated for 
about seven 
months.

Wu et al, submitted.



Cold season (JFM): 
traffic emissions and 
domestic heating

Warm season (AMJJ): 
photosynthesis, 
respiration, 
and CO2ff emissions.

Total CO2 fluxes look very 
reasonable in time:
● Traffic peaks at rush hours
● Biological flux contributions 

in the summer.

Cold season (JFM) Warm season (AMJJ)

And in space:
● Fluxes are large and positive from the 

north (highway), and 
● smaller, sometimes negative from the 

south (suburban, vegetation). 

Flux data show expected patterns for mixed biological and 
anthropogenic CO2 fluxes



● But these are total CO2 fluxes.  We can’t compare these directly to 
Hestia. 

● We can do better…

● We decompose fluxes into biological and anthropogenic 
components using CO/CO2 ratios,

● and decompose the anthropogenic fluxes in space to match Hestia 
pixel by pixel using a flux footprint model.

● Then we can construct an “apples to apples” test of Hestia vs. EC 
fluxes…
○ total CO2ff emissions, 
○ temporal pattern of emissions, 
○ spatial pattern of emissions



Methods: disaggregate fossil fuel and biogenic CO2 fluxes

^ ^^ ^
^ ^^

Assumptions:
• Eddies contributing to flux measurement are locally generated
• CO and CO2 have similar vertical mixing process (same eddy diffusivity)

Data screening:
• No counter gradient flux (K > 0)
• No negative CO flux (delta CO > 0)
• K and FCO are smaller than 3.5 σ

14

Downwind – upwind 
CO/CO2ff ratio from 
flasks defines R. Select 
R = 9 ppb / ppm.



(a)
(b)

CO2 flux
(µmol m-2 s-

1)

Match every half-hourly flux footprint in space to the Hestia emissions map

Flux footprint from one half-hourly data

Distance to the site (m)

• Flux footprint is related to instrument height, 
atmospheric stability and surface roughness.

• Tower measurements were used to calculate 
input parameters of flux footprint model.

Annual mean of high-resolution (200m) Hestia emissions inventory

• Hestia has fine-scale spatial structure in urban CO2

emissions, complementary to flux data.
• High emissions are correlated to the distribution of roads.

Note: emissions are limited to 20 µmol m-2 s-1  for visualization.



Flux decomposition yields fossil and bio CO2 fluxes
Cold season (JFM) Warm season (AMJJ)

Photosynthesis in the winter?



Hestia - Eddy Covariance bias and temporal pattern comparisons

Very small percentage bias (3%, 9%) in 
the seasonal averaged CO2ff emissions.

Modest RMSE, probably dominated by 
sampling error from the eddy 
covariance methods.

Shockingly close agreement in the 
seasonal temporal pattern of CO2ff 
emissions.

Wu et al, submitted



What are the implications of this comparison?
● For a first high-resolution (space and time) comparison between 

model and data, this is encouraging.  Hestia takes a lot of work to 
create, but it appears to work very well.  

● This flux decomposition approach also appears to work well.
● This lends confidence in our ability to deploy and use flux towers to 

construct additional detailed evaluation of our models of 
anthropogenic emissions.

● We don’t yet have a very high-resolution urban ecosystem model to 
test.  



Can we apply this methodology to event 
detection and quantification?

COVID lockdown test.

Vogel et al, in preparation



Location of tower 7, denoted by the yellow star.
Red circle delineates approximate footprint

Though not its original mission, Tower 7 
monitored emission changes due to COVID

~ 400m

● We measure CO and CO2 at 58 m and 21 m AGL 
via Picarro CRDS,
and eddy covariance fluxes at  41 m AGL.

● Designed to monitor the urban forest to the west.

● Analysis uses CO2 flux 
measurements from 41 m and 
mole fractional data from 21 
and 58 m to estimate CO2ff 
using Wu et al.’s method.

● Sample easterly winds to 
detect traffic emissions.

● CO/CO2ff ratio is varied.



Apple mobility data used to identify lockdown period

Red asterisk marks March 24th, the day Indiana 
Governor Holcomb’s statewide stay-at-home order 

took effect

Pre-lockdown

Lockdown



Total CO2 flux from the highway shows a clear decrease

But this mixes biogenic and fossil emissions.  Can we disaggregate?  
What is the proper CO/CO2ff ratio?  If traffic changes, this ratio may change.



Search for plausible R value by requiring small BioCO2 flux

No dedicated flask sampling of 14CO2 on tower 7.
Winter conditions, highway-dominated footprint.  Bio CO2 fluxes are likely to be very small.
R value of 7-8 appears to be the most appropriate.
Roughly consistent with flask sampling that suggests city-wide R values of about 8 ppb/ppm (Turnbull et al., 
2015)



There is a clear drop in CO2ff emissions during lockdown

Red asterisk marks March 24th, the day Indiana 
Governor Holcomb’s statewide stay-at-home order 

took effect

Pre-lockdown

Lockdown

Error bars represent standard error derived from 
the hourly emissions being averaged.



The strong correlation between CO2ff emissions and 
traffic becomes weaker during the lockdown

Traffic data from I-74, courtesy of the Indiana Department of Transportation (INDOT)



Implications

• Clear demonstration of the ability of an urban flux tower to track 
near-real-time changes in urban metabolism.

(hopefully the next changes will be emissions mitigation efforts, 
not pandemics)

• Tracking events is a challenge for inventories...assembling data inputs 
can be time consuming and high temporal data may not be available.

• Atmospheric inversions can “see” these events as well but struggle to 
be highly resolved in space.

• Methods are complementary.



Next:  Watching the grass grow...



Objectives / demonstrations.  
And insights as we go into “how” and “where”
• We need to evaluate our process-level understanding of anthropogenic 

GHG emissions (e.g. Gurney et al, 2012) with observations.
• We need to understand urban region ecosystem GHG fluxes.  They 

confound our understanding of anthropogenic emissions (Wu et al., 
2018; Miles et al, 2021), and they are interesting in their own right. 

• Urban ecosystems 
• Rural background

• We can use urban eddy covariance to evaluate the momentum and 
buoyancy fluxes driving urban ABL simulations (Sarmiento et al., 2017).



INFLUX + NIST grass flux tower sites
50 m 
diameter

Three flux towers 
deployed over 
urban turf grass 
sites.

Small (~3 m) 
towers with small 
flux footprints.

Typical flux tower 
instrumentation.

Two relatively 
unmanaged sites 
and one heavily 
managed site.
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Winter (November to December in 2017)

● Turf grass within the city shows large daytime fluxes (-8 µmol m-2 s-1) in the dormant season.
● This daytime flux magnitude is comparable to fossil fuel emissions.
● First assumptions have been to ignore biology for dormant season atmospheric inversions.
● Current ecosystem model parameters aren’t adapted to turf grass.
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Turf grass is very active in the dormant season!



New parameter sets are needed for turf grass
NEE vs DOY (2018-2019, Tmin=-3.5)

Previous 
realization of 
VPRM - no turf 
grass

New turf grass 
parameters

Measured fluxes
Optimization of parameters for the Vegetation, Photosynthesis and 
Respiration Model (VPRM) is in progress.

but we still don’t capture the “spring bloom.”.

Changing the 
minimum 
temperature for 
photosynthesis 
helps with the 
dormant season 
fluxes...



Finally:  Watching the corn grow…

Why?  Isn’t this a talk about using flux towers to study 
urban GHG fluxes?



Objectives / demonstrations.  
And insights as we go into “how” and “where”
• We need to evaluate our process-level understanding of anthropogenic 

GHG emissions (e.g. Gurney et al, 2012) with observations.
• We need to understand urban region ecosystem GHG fluxes.  They 

confound our understanding of anthropogenic emissions (Wu et al., 
2018; Miles et al, 2021), and they are interesting in their own right. 

• Urban ecosystems 
• Rural background

• We can use urban eddy covariance to evaluate the momentum and 
buoyancy fluxes driving urban ABL simulations (Sarmiento et al., 2017).



Why do agricultural fluxes matter when studying 
urban anthropogenic GHG emissions?

Miles et al., (2021)

• We need to measure how the city 
adds GHGs to the local atmosphere.  
So, we need to quantify the regional 
CO2 background.

• Growing season differences among 
“background” mole fraction 
observations can be the same order 
of magnitude as urban GHG 
enhancements. 

• We need regional flux tower data to 
create a solid understanding of the 
variations in the rural CO2
background.

Inset shows mole fraction towers.  01, 09 and 14 are “background” towers.
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Miles et al, 2021

Morgan Monroe State Forest: 
5-year mean: Novick et al. (2015)
Bondville Ameriflux towers:  
3-year mean: Hollinger et al. (2005)
Hestia urban mean for anthro fluxes.

Forest 
drawdown Ag drawdown

Indianapolis – Forest vs. Agricultural flux seasonality and 
amplitudes complicate the urban CO2 background. 
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INFLUX agricultural flux towers: Understanding the rural background 
so that we can better understand the city.

● Multiple corn and soybean flux towers have been deployed and moved from site to site to study regional 
variations in fluxes. 

● Corn productivity varies from west to east.  Soy / corn density varies from west to east.  Either / both 
could contribute to the complex background conditions we have observed.



Testing is underway
Vegetation Photosynthesis 

Respiration Model VPRM runs 
for a 300 x 300 km2 grid 

around Indianapolis 

Compare VPRM CO2 flux outputs to 
agricultural eddy covariance 

measurements
- Does VPRM represent flux 
measurements? (If no, optimize)

Convolve VPRM CO2 flux outputs with CO2
concentration tower influence functions
- Does VPRM explain the background 

mole fraction differences observed in 
Miles et al., (2021)?

Use VPRM to represent rural background conditions for Urban Inversions



Objectives / demonstrations.  
And insights as we go into “how” and “where”
• We need to evaluate our process-level understanding of anthropogenic 

GHG emissions (e.g. Gurney et al, 2012) with observations. Wu et al, 
submitted.

• We need to understand urban region ecosystem GHG fluxes.  They 
confound our understanding of anthropogenic emissions (Wu et al., 
2018; Miles et al, 2021), and they are interesting in their own right. 

• Urban ecosystems 
• Rural background

• We can use urban eddy covariance to evaluate the momentum and 
buoyancy fluxes driving urban ABL simulations (Sarmiento et al., 2017).



Urban land cover in WRF leads to systematic biases in surface 
fluxes

Sarmiento et al: A comprehensive assessment of land surface-atmosphere 
interactions in a WRF/Urban modeling system for Indianapolis, IN

Art. 23, page 6 of 22  

the sensible and latent heat fluxes for an urban grid tile. 
Equation 4 shows how furb influences the calculation of 
these fluxes.

 	 
 	 
�    7LOH 9HJ XUE 8UE XUE; ; I ; I= � +  (4)

XTile represents the calculated flux for the urban tile, XVeg 
represents the calculated flux for the tile if it were 100% 
vegetated, XUrb represents the calculated flux for the tile if it 
were 100% urban, and furb is the urban fraction. Therefore, 
an accurate representation of furb is vital when trying to pre-
dict a reasonably accurate surface flux from the UCMs.

In WRF v3.5.1, there are three urban land surface 
categories: Low-intensity residential, High-intensity 
residential, and Commercial/Industrial. Each category is 
assigned one furb value (0.50, 0.90, and 0.95). A problem 
arises when using the NLCD land cover data. The NLCD 
has four urban categories that are binned by furb as follows: 
0.0 – 0.19, 0.20 – 0.49, 0.50 – 0.79, 0.80 – 1.00. In order 
to alleviate the urban classification mismatch, one can 
either ignore the first NLCD urban category and set it to a 
vegetative land cover or combine the first two NLCD urban 
categories and set it to the “Low-Intensity Residential” 
category in WRF. For this study, we have chosen the latter 
of the conventions (referred to as def). Figure 2a shows 
the furb values for the innermost domain using the default 
upscaling that was outlined at the beginning of section 2.3. 

In WRF, the urban fraction parameter is only applied 
when UCMs are being employed in conjunction with 
a land surface model; in those cases the urban fraction 
parameter is used to calculate latent heat flux and sensi-
ble heat flux for a given grid point (Equation 1). The UCM 
is tasked with calculating the sensible and latent heat 
fluxes over urban areas while the Noah LSM calculates the 
sensible and latent heat fluxes for the vegetated areas. The 
sensible and latent heat fluxes from vegetation will not 
change between the SLUCM and BEP UCM model configu-
rations because both configurations use the Noah LSM. 
Differences between the SLUCM and the BEP UCM will 
occur due to differences in how urban surface fluxes are 
calculated and how the model introduces anthropogenic 
fluxes into the modeling system.

2.3.2 Modifying the urban fraction field 
In this study, we propose and test a method to capture 
more realistic variability in urban cover by modifying furb. 
Recall that the NLCD data has four urban categories that 
are binned by furb values (0.00 – 0.19, 0.20 – 0.49, 0.50 – 
0.79, 0.80 – 1.00). Each NLCD urban category is assigned a 
value for furb in the midpoint of this range (0.10, 0.35, 0.65, 
0.9) and is used along with fraction cover data to compute 
a unique average value of furb for each 1-km2 tile in the 
WRF inner domain (Figure 2) resulting in a more realistic 
set of furb values (referred to hereafter as real).

2.4 Experimental setup
For all of the simulations, the only variables that change 
are the PBL scheme (and their respective surface layer 
schemes), the UCM module, and the furb values. The PBL 
schemes chosen are either the Mellor-Yamada-Nakanishi-
Niino (MYNN; Nakanishi and Niino, 2004) PBL scheme, 
the Mellor-Yamada-Janjić (MYJ; Janjić, 1994) PBL scheme, 
or the Bougeault-Lacarrere (BouLac; Bougeault and 
Lacarrere, 1989) PBL scheme. 

The urban canopy options chosen are: no UCM, the 
SLUCM, or the BEP UCM. The UCMs contain many param-
eters (a subset of parameters and parameter values can be 
found in Table 2) and these parameters, with the excep-
tion of furb, were held constant at their default values. It 
is important to note that these parameter values are not 
representative of the urban landscape in Indianapolis; 
however, changing the values to something more repre-
sentative of the Indianapolis urban landscape is outside 
the scope of this project. Table 3 outlines the nine com-
binations of PBL schemes and UCMs that define the set of 
simulations used in this experiment. It should be noted 
that there is no none_MYNN_real configuration to accom-
pany the none_MYNN_def configuration because the 
urban fraction parameter is only used in the UCMs; there-
fore, running both none_MYNN_real and none_MYNN_
def would be redundant.

This study focused on two distinct time periods. The 
first period, which will represent wintertime conditions 
(WINTER), is from February 15, 2013 to March 20, 2013. 
The second time period, which will be representative of 

Figure 2: Urban fraction parameter values. The (a) default and updated (b) urban fraction fields for the 1 km2 
resolution domain in all model configurations. This domain encompasses the area of Indianapolis that is shown in 
Figure 1. DOI: https://doi.org/10.1525/elementa.132.f2
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3.2.3 Comparison of simulated surface energy fluxes to flux 
tower observations
The simulation results were compared to observational 

data taken from a flux tower that is located in the eastern 

part of the city (Figure 1a and 1b). The 1-km2 WRF grid 

point encompassing the tower is 53% vegetated/47% 

urban cover according to the NLCD. It is important to 

note that there is a sampling mismatch when comparing 

the tower observations and the model output. The 300 m 

radius area around the tower, which is roughly represent-

ative of the flux footprint (Figure 1b), is less vegetated 

(45% vegetation cover by area) than the 1-km2 WRF grid 

point.

Figure 6 shows the diurnal averages of the sensible heat 

flux, latent heat flux, and friction velocity for the observa-

tions and the real configurations of the model during the 

summer and winter period. The simulated sensible heat 

fluxes appear to be grouped by UCM used. In other words, 

the PBL scheme used had little to no effect on the mag-

nitude of the sensible heat flux. This was expected since 

the sensible and latent heat fluxes are linked to the land 

surface; therefore, these fluxes should be most sensitive to 

changes in the UCM or LSM.

The comparison to the flux tower observations was done 

using an hourly average analysis (Figure 6). During the 

WINTER simulation, the none_MYNN_def configuration 

performed the best at simulating the sensible heat fluxes 

at the observation site. However, this configuration still 

had a maximum hourly error of 68 W m–2 during the 

daytime hours (Figure 6a). The simulations that used 

the SLUCM and BEP configurations had higher sensible 

heat flux hourly average errors (about 100 W m–2 and 150 

W m–2 respectively) when compared to the wintertime 

observations. 

 For the summer period, the none_MYNN_def configu-

ration had sensible heat flux hourly average errors that 

were as high as 232 W m–2 (Figure 6d). The SLUCM had 

the lowest maximum hourly average error (35 W m–2) 

during the daytime and the BEP simulations had hourly 

average errors that peaked at about 110 W m–2. The none_
MYNN_def simulations do not allow for vegetation to be 

accounted for in the urban areas, so any simulations dur-

ing the summertime saw an increase in sensible heat flux 

and a suppression of latent heat flux. This exaggerated the 

errors in the simulated sensible heat fluxes, which were as 

high as 130% during SUMMER. 

It is also important to note that all of the simulations, 

regardless of season, had a positive bias in simulated 

sensible heat flux, which was partially due to the solar 

radiation overestimate that was discussed in the previous 

subsection. Looking at the previously defined ‘sunny days’ 

and comparing the reduction in the surface energy flux 

errors to the entire SUMMER simulation allowed for the 

quantification of the impact of the solar radiation bias. 

While the overestimation of incoming solar radiation 

was not the entirely responsible for the surface energy 

flux errors, the ‘sunny day’ average hourly surface energy 

flux errors were reduced by 10% to 30% (not shown). The 

magnitude of the error reduction was also dependent on 

model configuration. 

For all configurations of the model that used a UCM, 

the latent heat fluxes were essentially the same because 

of the common Noah LSM being used in all the model 

configurations (Figure 6b and 6e). During the winter 

period, all of the simulations that used a UCM had 

average hourly errors that peaked at about 25 W m–2 

and the none_MYNN_def average hourly errors peaked 

at –45 W m–2. For the summertime, the simulations that 

used a UCM had average hourly errors that peaked at 

120 W m–2 and the none_MYNN_def maximum average 

hourly error was roughly –180 W m–2. Recall that this 1 

km2 WRF model grid has slightly higher vegetation cover 

by area (53%) than the area in the flux footprint (45%) 

(Figure 1b). Correcting for this small mismatch would 

likely increase the disagreement between simulated and 

observed sensible and latent heat fluxes.
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Figure 6: Observed surface energy balance to model surface energy balance comparison. The model and 

observed diurnal averages of the (a, d) sensible heat flux (W m–2), (b, e) latent heat flux (W m–2), and (c, f) friction 

velocity (m s–1) for the WINTER (first row) and SUMMER (second row) time periods. DOI: https://doi.org/10.1525/

elementa.132.f6

WRF makes Indy a parking lot by default. 
Urban sensible heat fluxes are greatly 
overestimated.  

Tiling the land surface improves the surface 
energy balance.

Comprehensive ABL depth evaluation (rural 
and urban) is underway.

Sarmiento et al, Elementa, 2017



Conclusions
● Urban flux towers can be used, with appropriate data decomposition 

methods and tower placement strategies, for direct, quantitative tests of 
urban anthropogenic and biogenic flux models.  

● This work complements atmospheric inversions.
● These measurements also help us to improve our models of surface 

energy and momentum fluxes needed for atmospheric transport models.
● This is exactly why we make our “rural system” eddy covariance 

measurements!
● We need:  

○ More suitably instrumented and located flux tower sites.  
○ Advances in flux footprint models and tracer ratio methods.
○ High resolution anthropogenic and biogenic flux models suitable for urban 

systems.
○ Clear linkages to urban GHG mole fraction networks and urban inversion testbeds.  

Don’t keep these systems separate!
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