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ABSTRACT 

The first part of this report is an evaluation of the sensitivity of the Ecosystem station networks to 
environmental changes that is based upon the FLUXNET2015 dataset recently released. The analysis 
focused on the impact of environmental changes on ecosystem gross primary production (GPP), as 
annual integral or instantaneous maximums. We propose a model of ecosystem measurement 
accounting for the measurement uncertainty, temporal variability and temporal trends. This model 
allowed us to construct a look up table enabling to estimate the detection sensitivity of large 
ensemble of network designs, in terms of size, duration and accuracy. 

We have applied this model to the FLUXNET2015 dataset analysis. We evidenced the significant 
temporal trends in GPP with respect to the measurement, partitioning and gapfilling errors as well as 
the size of the station network and measurement duration. We showed that a temporal trend in GPP 
may not be detected in time series shorter than 10 years and in PFTs including less than 10 stations. 

In a third part of the project, we have been seeking to anticipate the possible future environmental 
changes that would force European ecosystems for the upcoming 30 years. We used the atmospheric 
chemistry-transport model CHIMERE made by Météo-France for projecting the temporal changes in 
key drivers along the 2020-2050 period across Europe at 50 x 50 km resolution. Within the RINGO 
project, the magnitude of the expected impacts of ozone dry deposition on ecosystems was mapped 
over Europe allowing us to illustrate the concept of ecozone. 

Last, based upon the look-up table of network sensitivity applied to the ecozone concept, we propose 
a roadmap for optimising the in situ ecosystem observations with respect to the detection and 
attribution of future environmental impacts. 
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1. Introduction

 The environmental forcing of terrestrial ecosystems has evolved dramatically for the last

20 years. Since the unprecedented heatwave in 2003, several environmental events were

recorded across continents: floodings, droughts, storms, fires, heatwaves. These rare or

extreme events are known to affect the functioning of terrestrial ecosystems with

immediate or delayed impacts, of which most are lasting for months or even years. More

subtle changes in environment are also affecting ecosystems: the background increase in

temperature and atmospheric CO2 concentration, the ratio of diffuse to direct light,

pollutants deposition (SOx, NOx, Ox, NHx). From the paradigm of a predictable, steady

evolution of climate and atmosphere, these observations lead us to consider the future as

largely uncertain with frequent extreme events (storms, heatwaves, droughts) interacting

with continuous – but not necessarily monotonous -- drifts in key drivers such as

atmospheric state variables (heat and water vapour content, greenhouse gases and

aerosols concentrations).

 Across the continents, a number of Research Infrastructures in the Environment domain

are observing the temporal and spatial changes in the functioning of terrestrial ecosystems

(ICOS-RI, ELTER, NEON, regional Flux tower networks). As far as the ICOS-RI is

concerned, the exchanges of greenhouse gases by continental ecosystems are

particularly relevant because most of them result from biophysical and physiological

processes. In particular, the CO2 exchanges from vegetated surfaces are actually the

“breath” of ecosystems, including both their respiration and metabolic energy intake

(Baldocchi, 2008). Their monitoring allows to trace at a half hourly resolution the

physiological status of the vegetation, its phenological cycle, nutritional impacts as well as

the management effects (Moreaux et al. 2020b). The in situ observations addressing

simultaneously the measurements of ecosystem biogeochemistry and concurrent

changes in the atmosphere, soil, and management have therefore an invaluable role in

understanding the responses of the vegetated canopies to the changing environment and

to attribute the ecosystem responses observed to drivers.

 The Research infrastructures observing the continental ecosystems must face the

complexity of the driving forces at work and their interactions. For most variables

observed, the time series of measured values are characterised by the imbrication of

temporal and spatial scales, from minutes to decades and from 10-6 to 106 m (Baldocchi

et al. 2001, Stoy et al. 2005, 2009, Moreaux et al. 2020a). Despite recent and continuous

progress in the harmonisation, metrology, and quality of their observations and

measurements, the capacity of the network of ecosystem stations to detect the variations

of ecosystems functioning and determine their drivers is challenged.

 The detection of the impact of the increase of the atmospheric CO2 concentration on

ecosystem-atmosphere fluxes is well illustrating this challenge. Since the first

measurements of atmospheric fluxes of CO2 by the eddy covariance technique (Wofsy et

al. 1993), the atmospheric CO2 concentration observed has increased from 357 to 415

ppm in the northern hemisphere. Such an enhancement would influence the CO2

assimilation by plant canopies significantly but several attempts to evidence such an

impact in the time series of CO2 flux measured over one or several station values were
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not clearly conclusive (Fernandez-Martinez et al. 2017). Only consistent and long time 

series from stations with low inter-annual variability suggest such an effect (Pilegaard et 

al. 2011, Horemans et al. 2020). Baldocchi et al. (2018) demonstrated that, given the error 

in measurements, the duration of the time series is indeed a key factor for the detection.  

 For optimising the capacity of in situ networks of stations to detect temporal and spatial

changes, there is indeed a critical need of a general framework that could apply to the real

world. Such an analysis would also provide tools for optimising network of stations in terms

of network size, station location, monitoring duration and to identify target variables

measured and their accuracy.

 Within the framework of the RINGO task 3.5, we have established a simple model of

ecosystem measurements and used this model to assess the detection sensitivity of

networks of ecosystem stations of varying size, accuracy and duration. First, we reviewed

the components of the errors of a key variable determined from ecosystem measurements,

the gross carbon assimilation or gross primary productivity (GPP). We used then a

MonteCarlo technique and trend analysis for investigating how the network size, duration

and accuracy are conditioning its detection capacity. We used the model to estimate the

marginal gain of improving the network size, duration and measurements accuracy for

detecting a change in ecosystem atmospheric exchanges.

 The recent release of a large ensemble of eddy covariance datasets offers an opportunity

to apply the model for the case of a stations network. The FLUXNET-2015 data set

includes stations having monitored atmospheric fluxes at the continental levels for

continuous periods extending from 4 to 21 years. Their data were processed

homogeneously using several options and measurements uncertainty was determined

(Pastorello et al. 2020). This ensemble can be used for calculating measurement

uncertainty, accuracy, temporal variability and long-term trends and split this calculation

among several Plant Functional Types. Here, the FLUXNET2015 data set was used to

test the capacity of historical network of ecosystem stations to detect changes in CO2

assimilation (gross primary production, GPP). We analysed the temporal changes of the

annual sum and instantaneous maximal value of GPP, and quantified its temporal

variability and uncertainty.

 We further developed the temporal analysis of ecosystem measurements using

homogenised 8 year-long time series of five ecosystem stations in France, where the

correlation patterns and temporal spectrum of key ecosystem variables for different PFTs

were investigated using power spectra and Random Forest analysis. The results and

conclusions have been published and are therefore not detailed in this report (Moreaux et

al. 2020b).

 Last, in order to illustrate how the ecosystem network might be design and optimised, we

projected the expected ozone deposition on the ecosystem stations composing the ICOS

Ecosystem network for the next 30 years. From this analysis, we proposed to optimise the

ecosystem observations for enabling them to detect and attribute the future changes to its

drivers.

2. Uncertainty linked to the EC methodology. The single station case.

The eddy covariance (EC) method is used in the ICOS-RI, ELTER, NEON and by the regional 

networks of stations across the world to calculate vertical turbulent fluxes of momentum, 

energy and gases exchanged between the continental surface and the atmosphere (Baldocchi 

2014). The EC method and the instruments used for are prone to a number of limitations which 

are sources of errors in the data measured. In addition, starting from the same raw data set, 
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different processing schemes of flux computation may produce a 5 to 10% difference in final 

values (Mauder et al. 2008). Also, simultaneous raw data sets obtained from different sensors 

operating in the same site can result in a 10 to 15% difference (Mauder and Foken, 2006, 

Mauder et al. 2008, Goodrich et al. 2016).  

We consider more specifically two sources of error (Moncrieff et al. 1996): systematic errors 

(frequency response errors, physical consideration, Instrument calibration, gas flux storage, u* 

filtering) and random errors (Instrumental noise, stochastic nature of turbulence (Wesely and 

Hart, 1985) and footprint inhomogeneity). Considering an optimal measurement setup with well 

calibrated sensors (Rebmann et al. 2018) and a standardised scheme of data processing, we 

can assume that the systematic measurement error is minimised. The random error of the 

fluxes is thus dominating the EC flux measurement uncertainty at short timescales. It refers to 

the stochastic nature of turbulence, i.e. the sampling error expressed by the flux error of the 

covariance (Finkelstein and Sims, 2001, Salesky et al. 2012) and the error due to the 

instrumental noise (Lenschow et al. 2000, Billesbach 2011). 

 The total random uncertainty associated with each 30 min span represents the standard 

deviation of the covariance of the scalar and the vertical wind speed component. The 

covariance can be evaluated according to Finkelstein and Sims (2001) with a statistical 

approach, the one-point sampling error approach. A daily differencing approach or self-

differential approach is also commonly used (e.g. in FLUXNET2015 dataset) (Hollinger and 

Richardson, 2005, Richardson et al. 2006).  

The other major source of error in the flux data is due to the filling of gaps in data time series. 

The quality control of the 10 Hz frequency data leads to reject a substantial fraction of data, 

spikes and outliers, when turbulence drops below a given threshold (u* threshold) or not 

passing the stationary test. The uncertainty in the friction velocity, u*, threshold estimate 

represents one of the largest components (Wutzler et al. 2018) because the higher is the u* 

threshold, the larger is the amount of half-hourly data discarded, increasing the amount of data 

to gap-fill and associated uncertainty. 

For filling the gaps in the time series let by data rejection (QA/QC tests, Mauder and Foken 

2006 and u* threshold, Papale et al. 2006), different procedures are used: statistical 

interpolation, neural-network, parametric, or mechanistic models (Reichstein et al. 2005, Falge 

et al., 2001). The related uncertainty is within the same order of magnitude than the 

measurement random uncertainty (Wang et al. 2015). We illustrated these two sources of 

errors for the FR-Pue time series 2001-2014, an Evergreen Broadleaf Forest ecosystem 

(EBF). Our results (fig. 1) confirm this conclusion, the “gapfilling” uncertainty being even larger 

than the random uncertainty. 
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Figure 1. Example of uncertainty assessment for FR-Pue (mediterranean EBF) over the 

period 2001-2014. Random uncertainty is computed from Finkelstein and Sims 

(2001), the gap-filling uncertainty is provided by Reichstein et al. (2005). 

1.1 Error propagation 

We explore the error propagation of flux uncertainty over the period 1995-2015 based on 

gapfilled time series of half hourly data and across a range of integration durations. Within the 

RINGO Task 3.5 we have first used the data from the FLUXNET2015 database for 31 

ecosystem European stations which represents a pre ICOS ecosystem network. We calculated 

a joint uncertainty, , as the combination of random uncertainty (Richardson et al. 2006) and 

the gap-filling uncertainty (u* filtering uncertainty). Since random errors accumulate “in 

quadrature”,  was calculated as √𝜀1
2 + 𝜀2

2) where 1 and  are measurement and gap-filling

errors respectively. In accordance with previous studies, we showed that the uncertainty is 

negligible at the 30min time step (Figure 2), that is the averaging period of the EC flux 

computations. Due to gap filling error, the joint uncertainty of the CO2 flux integrals increases 

with the integration time, reaching a mean value among stations of 27.3 gC m-2 for yearly 

integrals (n = 31 sites, min: 6.93 gC m-2, max:165 gC m-2).  

Figure 2. Error propagation on CO2 flux in terms of total uncertainty (random + gap-filling) 

from 31 stations of the FLUXNET2015 dataset (Richardson et al. 2006 + ustar 

filtering). 
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1.2 Statistical power of EC studies 

Recent studies started to consider the spatial and temporal performance of a network within 

the context of detectable changes. Hill et al. (2017) has recently estimated the number of 

replications needed for a robust flux computation for one station. They defined the effect size 

by the magnitude of the difference in mean fluxes from two towers, relative to the total 

measurement uncertainty. In this study, the uncertainty was assessed using a self-referential 

approach (Richardson et al., 2006). However, spatially replication of EC system in the same 

station is a challenge, especially due to high equipment costs. 

Figure 3. From Hill et al. (2017), Statistical power, 

that is the probability of correctly rejecting the null 

hypothesis (no difference between two ecosystems) 

, H0, as a function of the effect size and the number 

of eddy covariance towers per ecosystem. The 

effect size is taken to be Cohen’s d. 

Hill et al. showed that for a typical ecosystem, around four EC towers are needed to have 95% 

statistical confidence that the annual flux of an ecosystem is nonzero. Furthermore, if the true 

flux is small relative to instrument noise and spatial variability, the number of towers needed 

can rise dramatically.  

Shao et al. (2015) underlined the duration of a time series needed for detecting temporal 

trends. Recently, using a Monte-Carlo simulation to derive the detectable thresholds for trends 

and interannual variability of the annual carbon fluxes, Baldocchi et al. (2018) have estimated 

the duration needed for detecting a step change and a temporal linear trend in the time series 

of NEE measurements. For instance, the fig. 4 shows that, given a measurement error of 

30 gC m−2 y−1, the monitoring duration should exceed 8 years for detecting a trend of 

interannual NEE reaching 7 gC m−2 y−2. If the data records exceed 20 years, trends as small 

as 3 gC m−2 y−2 can be detected whatever is the uncertainty (i.e., ± 10, ± 30, or ± 60 g C m-2 

y−1) (Figure 4).  

Figure 4. From Baldocchi et al. (2018). 95%

confidence intervals of the detectable trend in

random time series of varying length and

uncertainty. 
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3. Detection capacity of a virtual network of Ecosystem stations

3.1 A general model of ecosystem measurements 

We model the measured value of an ecosystem variable measured by a network of in situ 

stations as the random variable: 

𝑋𝑡,   𝑗 = 1 +  𝑡 × 𝑎  ±  𝛼́ (Eq.1) 

where 𝑋𝑡,   𝑗 stands for the normalized variable value (e.g. GPP)  at time t  and in station j, 

parameter a refers to the slope, i.e. the linear change in the variable attributed to a change in 

an environmental parameter (e.g. atmospheric CO2 increase, temperature, air vapour pressure 

saturation  deficit etc.) and ± 𝛼́  for the detrended temporal variability of the variable 𝑋. The 

latter is the sum of the measurement uncertainty, , as discussed in the previous section, and 

the “natural” residual variability, , caused by temporal changes in external drivers or 

endogenic processes, so that 𝛼́ = 𝜀 + 𝜎.  

Actually, the equation (1) extends the statistical analysis developed in Baldocchi et al. (2018). 

We assume further that the stations measuring 𝑋 within the same environmental area and on 

the same Plant Functional Type may be treated as independent replicates. We can therefore 

enrich the analysis previously developed by Baldocchi et al. (2018) including the number of 

stations considered and the decomposition of the overall temporal variability of X,  among three 

components:  

- a linear drift, a,

- an error term, ,

- the natural detrended temporal variability, .

The calibrations of a,and using the FLUXNET2015 dataset are further described in 

section 4. 

3.2 Network experiment - method 

For assessing the sensitivity of a network of stations, we created a virtual, ideal, network 

composed of similar stations in ecosystems belonging to the same PFT. The distribution of the 

error term, 𝜀, and variability, 𝛼, were calibrated from legacy data of the FLUXNET2015 dataset 

as explained in section 4. Different network designs in terms of station numbers (1 to 70), error 

(0.02 to 0.18), and measurement duration (3 to 25 years) were generated. An ensemble of 

datasets measured by each network design was simulated by Monte Carlo approach (n = 

5000) using the models of distribution of error,   and variability,, fitted on the FLUXNET2015 

time series of GPP, i.e. a Normal and Gamma distributions respectively. The parameters 

distribution was assumed constant in time. The experiment is summarised in Table 1.  

For each of the 5000 generated samples of each network design (27  70  56), a linear 

regression on time was fitted and the Student‘s t value on slope calculated. A network having 

more than 95% probability (>4750) of concluding to a significant slope of 𝑋 over time is 

considered as able to detect the trend. Conversely, when the linear regression slope was 

significant in less than 95% of samples, the network was considered as unable to detect the 

trend. The statistical analyses were performed with SAS 9.4 Statistical Software Package (SAS 

Institute, Cary, NC, USA). The ensemble of results is a look-up table providing the sensitivity 

of all possible (n = 105 840) network configurations.  
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Table 1. Simulation plan 

Variables and 

parameters 

  

Start End by Runs 

Time unit: (t)   3 30 1 27 

Station (j)   1 70 1 70 

Error (ε)   5% 60% 1% 56 

Slope (a)   0.50% 2% 0.1% 16 

Monte Carlo (k)   1 5000 1 5000 

 

3.3 Network experiment – results 

For illustrating the potential interest of this experiment, the fig. 11 summarises the results 

obtained for four values of temporal trend, a = 0.005; 0.010, 0.015, 0.02 yr-1. In each graph, 

the three axis represent the network size (x), temporal variability (y) and duration (z), 

respectively. Each point of the blue gridded surface is the minimal duration for which the 

regression of  𝑋 on time was significant in >95% of the 5000 runs. The temporal trends that 

are below the surface are not detected with p=0.95 confidence. Hence, the surface sets the 

detection threshold or sensitivity of the station networks. The red dotted lines correspond to 

the case of a network of stations corresponding approximately to the size (n = 10) and temporal 

variability of the FLUXNET2015 ENF stations (= 0.07, = 0.19,= 0.20). The lower is the 

surface within the plot, the more sensitive is the network. The fraction of the 3D volume above 

the surface may be seen as the detection capacity of the station networks while the 

corresponding value below the surface represents the “blind” network designs. 

In the example in fig. 5, the network ENF size and variability are shown as red lines. The 

network may detect a 0.005 trend after 30 years, a 0.01 trend after 18years and a 0.002 trend 

after10 years. This is consistent with results shown in section 4 where the ENF stations of the 

FLUXNET2015 dataset evidenced a temporal trend of 0.15 to 0.28 within a 10-year time. The 

profiles of the detection surface along the three axis indicates the gain in sensitivity expected 

when increasing the network duration (z vertical axis), network size (x horizontal axis) or 

temporal variability (y horizontal axis). The gain is larger when the profile is steeper.  

The model experiment shows that the sensitivity gain does not increase linearly with size, 

duration or temporal variability, 𝛼́ :  maximal gains are observed from a size of 1 to 12 stations 

and a duration from 0 to 15 years. Increasing the number of stations is thus critical for detecting 

changes but adding supplementary stations beyond n = 10 adds little gain in sensitivity. The 

temporal variability has a negative effect on the detection threshold. This effect is 

approximately linear but with a steeper slope for small values of a. It means that the gain 

expected from reducing the temporal variability of measurements is larger for the detection of 

small temporal trends (<0.02 y-1), such as the CO2 effect on GPP.  
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Figure 5. Surface of detection for four temporal trends (a = 0.5% , 1%, 1.5% and 2.0% yr-1). 

The x-axis represents the number of stations in the network (from 1 to 30), y-axis 

is the temporal variability  (from 0% to 30%) and z-axis the duration of the 

network (0 to 30 years). The red lines illustrates the case of network of 10 

stations with a variable showing a variability of 20% such as the ENF type in the 

FLUXNET2015 database. Projection on the time axis (black dotted line) shows 

that detection time decreases from 30 to 10 years when a increases from 0.5 to 

2% year-1. The blue line at the top of plot is the detection limit. 

4. Reanalysis the Fluxnet 2015 dataset time series. The network of stations
case

In order to quantify the capacity of a network of stations to detect temporal changes, we have 

assessed the potential of EC towers network to a change in gross primary production, GPP. 

We applied the concept previously developed for modelling the variable values measured from 

ecosystem stations to the case of the annual GPP as determined by historical stations included 

in the FLUXNET2015 dataset. We used the FLUXNET2015 database to assess the error and 

interannual variability of historical stations.   

a = 0.015 

yr-1
a = 0.020 

yr-1

a = 0.010 

yr-1a = 0.005 

yr-1
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4.1. Target variable. 

The variable GPP was selected because it reflects the photosynthesis of the canopy foliage 

whose determinism is well understood and documented for most plant species and canopies. 

The terrestrial GPP is controlled by the amount of light absorbed by the canopy, the CO2 

concentration at internal carboxylation sites, and metabolic carboxylation capacity of the 

canopy. The GPP is therefore expected to respond to the main environmental forcings: climate, 

water cycle, CO2 concentration, pollutants deposition.  

GPP is not measured by ecosystem stations but calculated from the net flux of CO2 exchanged, 

NEE. The latter can be partitioned into two components, the ecosystem respiration and 

photosynthesis, based on the fact that photosynthesis is null during night. The Lasslop et al. 

(2010) partitioning method was used. We selected two time integrals of the photosynthetic CO2 

assimilation, GPP, the annual sum, or GPP (gC m-2 y-1), and its half hourly annual maximum, 

thereafter GPPmax (µmol CO2 m-2 s-1). The former was chosen because integrating a whole 

growing season and the latter because the CO2 effect on photosynthesis is larger under light 

saturated conditions, when the Leaf Area Index (LAI)  is maximal and plant stomata fully open, 

e.g. at high air humidity and on wet soil. Moreover, the gap-filling error is null for GPPmax that 

is prone to the only random uncertainty. In order to minimise the latter, we calculated GPPmax 

values as the average of the n values in the upper quartile of half-hourly GPP determined in 

June, at VPD <1600 Pa on wet soil and under a downward photosynthetic photon flux density  

PPFD > 1400 µmol m-2 s-1 or shortwave radiation flux density >700 W m-2. The random error 

on GPPmax is thus reduced by a factor 1
√𝑛

⁄ . 

Among other forcings, the control of the photosynthesis in C3 plants by the atmospheric 

concentration of CO2 is well known. However, the GPP effect of CO2 interacts with, e.g., plant 

nutrition, water availability or temperature which makes the only CO2 effect difficult to detect 

and quantify (Zaehle et al. 2014). In order to assess the effect of the historical enhancement 

in CO2 concentration and the corresponding temporal trend of GPP and GPPmax to be expected 

we simulate the corresponding  temporal trend  using the forest model GO+ that is a simple 

process based model of forest functioning, production and growth (Moreaux et a. 2020a). The 

model can be applied to various species (Eucalypt, Douglas fir, Coffee, European Beech, 

maritime Pine, Oaks) and management schemes (standard, coppice, agroforestry). In this 

exercise, GO+ was parameterized for a temperate evergreen needleleaf forest (FR-LBr in the 

FLUXNET2015 database) where the model simulates the canopy growth and LAI satisfactorily. 

Two runs were considered: 

- Run1 “control”: CO2 concentration was fixed at a value of 343 ppm from 1984 to 2011.  

- Run2 ”historical”: CO2 concentration is the historical record on site and grows from 343 

ppm in 1984 to 390 ppm by 2011. 

Comparing the outputs of the two simulations, we found that the CO2 anomaly reached 170 

gC m-2 y-1 in 2008. This represents a linear drift of (+ 6.8 gC m-2 y-1 ) y-1 over the 1984-2008 

period, i. e +0.50% y-1 (Fig. 6). The question raised is then how much is the uncertainty on the 

target variables used, GPP and GPPmax. 
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Figure 6.  Daily GPP over 1984-2010 simulated by the GO+ model at constant (grey) and 

historical CO2 concentrations (red) at the FR-LBr ENF forest in Southwest of 

France (a). The CO2 anomaly on GPP over the 1984-2008 period and its 

regression on time are plot in the lower diagram (b).  

4.2. Uncertainty and inter-annual variability of target variables calculated from the 
FLUXNET20151 data set. 

4.2.1. Preliminary analysis of the annual values of GPP. 

The annual FLUXNET2015 dataset includes 206 sites providing annual values of GPP, 

equivalent to 1181 site-years (stations list in appendix 1). For one station j, annual GPP was 

first decomposed as follows: 

𝐺𝑃𝑃𝑗 = 𝐺𝑃𝑃𝑗
̅̅ ̅̅ ̅̅ ± 𝛼𝐺𝑃𝑃,𝑗 (Eq. 2) 

where 𝐺𝑃𝑃𝑗
̅̅ ̅̅ ̅̅  is the average of annual values of GPP that is  ‘GPP_NT_CUT_REF’ of station j in

the FLUXNET2015 database and ±𝛼𝐺𝑃𝑃,𝑗 is its bulk, undetrended, standard deviation (Figs 7-

8). When combining the 147 sites, we obtained an average value of GPP = 1243 gC m-2 and 

an average standard deviation GPP = 261 gC m-2, which corresponds to 21% of GPP. We also 

found the distribution of the standard deviation of GPP is well fitted by a gamma law which will 

be used further more for modelling the ecosystem GPP measurement (fig. 8). 

1 (ex. FLX_ IT-Col _FLUXNET2015_FULLSET_YY_1996-2014_1-3.csv) provided through the portal 
http://fluxnet.fluxdata.org/ 
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Figure 7. Average of the annual GPP per site (upper graph, units are gC m-2 y-1) and 

histogram of the distribution (bins=100) (lower graph). 

Figure 8. Frequency distribution of the standard deviation of annual GPP, . Models 

adjusted with their respective parameters are given in the legend. 

(gC m-2 y-1)
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4.2.2 Calibration of measurement model 

Linear trend and detrended overall variability 

For calibrating the general model of ecosystem measurement (Eq. 1), the same processing 

was used for both GPP and GPPmax. The 4 year-, 10 year- and 21 year- long time series of 

GPP and GPPmax were first regressed over time and the linear slope, the parameter  a of the 

model, was estimated. The standard deviation of the detrended time series, parameter 𝛼́, was 

then calculated -but not yet partitioned into random uncertainty and natural variability at this 

stage-. The figure 9 illustrates the results obtained over 10 year-long time series. The 

corresponding figures of the 4 year- and 21 year-long time series are in appendix 2 fig. A2. 

The PFTs having the largest number of stations, the crops (CRO, 9 stations) and evergreen 

needleleaf forests (ENF, 13 stations) showed a significant (p<0.05) linear trend over time. 

While the ENF slope was positive (+0.015 y-1), the temporal trend of crop GPP was negative 

(-0.03 y-1) due to extremely low values in 2013. The grasslands stations (n=4) showed also a 

significant positive trend with p value = 0.1. Though not significant, the same trends were 

revealed in 4 year-long time series. Only one site, the Harvard forest, could be analysed over 

a 21 year-long series of annual GPP that showed a significant, positive, trend (+0.01 y-1).  

The analysis on GPPmax led to similar conclusions than GPP. The list of sites involved is in 

appendix 3. The error on GPPmax was calculated for the two main methods of partitioning and 

gap filling, abbreviated as NT for night-time (Reichstein et al. 2005) and DT for day-time 

(Lasslop et al. 2010). Both led to similar results and only the latter, DT, is shown here (fig. A3 

in appendix 4). The random uncertainty was entirely due to measurement errors since no gap 

filling was applied. The temporal trends of the 10 year-long time series are shown in fig. 9 and 

corresponding figures for the 4 year-long and 18 year-long time series are in appendix 5 (fig. 

A4). On average, the temporal variability of GPPmax was higher than GPP, that is clear in crops 

(CRO) and coniferous forests (ENF). The 10 year-long time series showed a significant positive 

trend of GPPmax for the only ENF (+0.028 y-1). The mixed forest (MF) exhibited also a positive 

temporal trend (+0.015 y-1) with p value close from 0.10. The crops did not show a significant 

temporal trend. The number of replicates is higher for the ENF type and may explain why the 

regression over time was significant in this case and not for other PFT with less replicates. The 

results also demonstrate that the monitoring duration plays a key role in evidencing temporal 

trends. Although generally higher, the positive trends in GPP and GPPmax detected in 

coniferous, grasslands and mixed forests are in the order of magnitude of the expected effect 

of CO2 increase on GPP and GPPmax.  

Random uncertainty 

The FLUXNET2015 database provides the opportunity to assess the random uncertainty 

component on GPP and the Ecosystem Respiration (Reco) across sites. Indeed, this is the 

first database combining different sources of uncertainties and providing a unique variable, 

called the JOINT UNCERTAINTY, which includes the random uncertainty and the u* filtering 

uncertainty. 

The joint uncertainty was assessed for the variable NEE_CUT_REF. The random uncertainty 

in the measurements is estimated on the half hourly data and quadratically summed for the 

other time scales. The methodology used for estimating the random uncertainty is based  on 

Richardson et al. (2006). This self-differential approach requires measured values with similar 

meteorological conditions within a given sliding window of ± 7 days and ± 1 hour of the current 

timestamp. The random uncertainty, RANDUNC, is calculated as the standard deviation of the 
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measured fluxes within a given window. The meteorological conditions criteria are air 

temperature within ±2.5 °C, vapour pressure deficit within ±5 hPa and incoming shortwave 

radiation ±50 W m-2 when higher than 50 W m-2 or ±20 W m-2 otherwise.  

Gap filling error  

The gap filling error is produced by the gap gilling method used, here the marginal distribution 

sampling (Reichstein et al. 2005). Its magnitude is linked to the u* threshold selected. The u* 

threshold is estimated in the FLUXNET2015 data set by the Moving Point Test according to 

Papale et al. (2006) and the estimation of uncertainty of the threshold is processed by 

bootstrapping the data within a year.  

 

 

 

Figure 9. Linear regression of GPP (above diagrams) and GPPmax (below diagrams) 

over time by PFT along 10 year-long time series. 
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Resulting cumulated error 

Since GPP is calculated using values measured at night and during the day (Lasslop et al. 

2010), we considered that the uncertainty in hourly values of  GPP at station j is the quadratic 

sum of the error in nightime and daytime error values:  

𝜀𝐺𝑃𝑃,𝑗 = √𝜀𝑁̅𝐸𝐸,𝑗,𝑁𝑖𝑔ℎ𝑡
2 + 𝜀𝑁̅𝐸𝐸,𝑗,𝐷𝑎𝑦

2 (Eq. 3) 

When averaged over n stations of the PFT P, the error components are the average over the 

n stations of the PFTs: 

𝜀𝑁̅𝐸𝐸,𝑃,𝑁𝑇 =
1

𝑛
× ∑ (

𝑁𝐸𝐸_𝐶𝑈𝑇_𝑅𝐸𝐹_𝑁𝐼𝐺𝐻𝑇_𝐽𝑂𝐼𝑁𝑇𝑈𝑁𝐶

𝑁𝐸𝐸_𝐶𝑈𝑇_𝑅𝐸𝐹_𝑁𝐼𝐺𝐻𝑇

𝑛
𝑖=1 × 100) (Eq. 4) 

𝜀𝑁̅𝐸𝐸,𝑃,𝐷𝑇 =
1

𝑛
× ∑ (

𝑁𝐸𝐸_𝐶𝑈𝑇_𝑅𝐸𝐹_𝐷𝐴𝑌_𝐽𝑂𝐼𝑁𝑇𝑈𝑁𝐶

𝑁𝐸𝐸_𝐶𝑈𝑇_𝑅𝐸𝐹_𝐷𝐴𝑌

𝑛
𝑖=1 × 100) (Eq. 5) 

The error on the integral over a time series of t values is therefore : 

𝜀𝐺̅𝑃𝑃,𝑃 = √𝑡   × √𝜀𝑁̅𝐸𝐸,𝑃𝐹𝑇,𝑁𝑖𝑔ℎ𝑡
2 + 𝜀𝑁̅𝐸𝐸,𝑃𝐹𝑇,𝐷𝑎𝑦

2 (Eq. 6) 

The detrended variability of GPP, 𝛼́, was calculated accounting for the linear trends detected,

whatever their statistical significance (Fig. 10). Apart from the crops, the variability varies 

among PFT between 10 and 20% and shows no systematic trend with respect to the duration 

of the time series considered. The GPP variations are weaker in deciduous broadleaf forest 

type and almost even among other types. Finally, knowing the random uncertainty, 𝜀𝐺̅𝑃𝑃,𝑃,  ,
and the overall detrended variability, 𝛼́ , the residual natural variability, 𝜎𝐺𝑃𝑃,𝑃 ,   can be

calculated as well.  

The uncertainty calculation and Eq. 3 to 6 could be resolved for 147 sites and the results 

obtained are provided Fig. 10 and Table 2. Since the error term  tends to cancel out when 

integrated over large time series, the error on annual GPP is three order of magnitude less 

than the temporal variability, 𝛼́ , (Table 2).  

The results obtained show that once excluded PFT with less than 2 stations the following 

conclusions may be drawn:  

- the random “measurement” uncertainty on annual GPP, , is negligible;

- the crops show the largest temporal variability, presumably due to the changing

practices from year to year (crop rotation, soil preparation, fertilisation, residues

management).

- the forests (DBF, EBF, ENF, MF) tend to show less variability than crops, shrublands

and grasslands and their inter-annual variability is in the range of 9 to14%.

These observations should not be over interpreted owing to the small size and uneven 

representativeness of the samples selected. The higher variability of annual GPP may be due 

to multiple factors such as climate, management practices, pollution and some PFTs, e.g.,  the 

coniferous stands, covers a wider range of climate than other types. Nevertheless, this analysis 

provides a synthetic, cross PFT’s comparison of the errors recorded in historical time series 

available.   



19 

Figure 10. Error on mean annual GPP, 𝜺̅𝑮𝑷𝑷,𝑷 , estimated from Eq.  (6) (top diagram) and

detrended inter annual variability of GPP, 𝜶́ , for 8 PFTs and three time series

durations (below diagram).  

Table 2. Normalised values of error components on GPP split by Plant Functional Type and 

calculated using the FLUXNET2015 dataset for 10 year-long time series, n is the number 

of stations included. 

CRO CSH OSH DBF EBF ENF MF GRA WET WSA 

 0.25 0.09 0.26 0.15 0.14 0.19 0.19 0.18 0.29 0.18 



(E-3) 

0.54 0.22 0.45 0.15 0.18 1.14 0.34 0.31 0.17 0.33 

n 7 1 2 5 3 7 5 4 1 1 
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5. Application to the ecosystem network optimization for 2020-2050

5.1 Application of the European continental area. 

Here, we enlarge the previous approach to the entire continental European area surface. For 

extrapolating our model at the European level we assume the following: 

- the environmental forcing regime for the upcoming 30 years is spatially homogenous

over spatial domains;

- the effect of the drivers considered on ecosystem of the same PFT can be assumed

similar among stations in terms of temporal change and magnitude;

- the European continental area can be simplified as the juxtaposition of several

conterminous areas within which the above assumptions are satisfied.

We call these homogenous areas “ecozones”. The ecosystem stations monitoring the same 

PFTs within the same ecozone could thus be considered as replicates. The ecozone concept 

is flexible and can be adapted to the drivers considered, i.e. ecozones may vary in relation to 

the driver, management and ecosystem considered. 

For analysing the capacity of the ICOS Ecosystem network to evidence the future impacts of 

environmental changes on the ecosystem-atmosphere exchanges across Europe, we propose 

therefore to clustering the ecosystem stations in subgroups where temporal evolution of the 

forcing variables and ecosystem response can be considered as approximately homogenous. 

We need therefore to assess the expected environmental changes for the next 30 years across 

Europe for providing a prior map of the main European ecozones, as proposed in the following 

section 5.2.  

The look-up table constructed from the virtual network experiment above will then allow us to 

determine the best minimal network configuration requested for detecting environmental 

impacts within and across ecozones. For convenience, a metamodel summarising the look-up 

table is under construction. In order to identify the potential ecozones delimited by 

environmental scenarios, the next section provides an overview of potential changes to be 

expected across Europe for the next 30 years.   

5.2 Scenarios of future forcings of European ecosystems. 

In order to simulate atmospheric chemistry trajectories and climate, we worked in partnership 

with the CNRM-Meteo France (V. Marecal, B. Josse and K. Lamy), using the chemical 

transport model (CTM) MOCAGE (Josse et al., 2004, Teyssedre et al. 2007). This model was 

able to simulate the variables of interest at an hourly basis for the historical period 1995-2015 

and for the 2015-2050 period with a spatial resolution of 0.5°×0.5° across Europe: 

- Concentration (ppb) and wet/dry deposition of ozone O3 (mol m-2 h-1), (fig. 12).

- Concentration of nitrogen oxides (NOx as NO, NO2 and NO3)

- Nitrogen wet and dry deposition (NO2 et NO3)

MOCAGE uses climate projections from the ARPEGE-Climat GCM in its native global grid with 

a resolution of 0.5° over Europe. For the RINGO task 3.5 projections (2015-2050 period), the 

RCP4.5 climate scenario and the ECLIPSE anthropogenic emissions v4.a scenario for air 
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pollutant emissions were used (http://eclipse.nilu.no/). The latter corresponds to the annual 

sums of emissions of different components following the Maximum Feasible Reduction (MFR) 

legislation. The EMEP data were also used for past reconstruction from 1996 to 2012 that 

serves to evaluate the model results and compare them with data. The fig. 12 shows the data 

simulated at the FR-Gri cropland site during summer 2005 together with the data observed in 

situ.  

 

Figure 11. Mean daily cycle of air temperature and humidity, ozone concentration and 

deposition during the growing season (JJA) 2005 measured by the ICOS 

instruments and simulated by the MOCAGE model.   

 

Time disaggregation to hourly scale was obtained from GENEMIS data (Ebel et al., 1994) 

using hourly coefficients depending on the activity sector (Society, 1994). The discrepancy 

shown in ozone data may be due to the resolution (0.5 x0.5°) of the MOCAGE results but were 

still surprising because previous comparisons showed better agreement with in situ 

measurements. The parameterisation of the deposition velocity might also explain the 

underestimate of MOCAGE results, the soil thickness being overestimated here which lead to 

overestimate the ozone deposition and underestimate the surface ozone concentration. 

Indeed, the mean bias observed with revised values of soil thickness (experiment 289) was 

close from null. The mean bias of the projections across Europe of simulated concentrations 

did not show marked spatial inhomogeneities. Almost in parallel with the RINGO project, 

Ducker et al. have reconstructed historical deposition rates over flux tower stations in US and 

Europe (Ducker et al. 2018)  

The other drivers analysed are still being explored following the same approach. At this stage 

we think it is however appropriate to share this discussion with other in situ infrastructures in 

order to coordinate the interoperability of existing infrastructures and organise synergies and 

complementarity.   

http://eclipse.nilu.no/
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Reconstructed dry deposition of ozone across the ICOS ecosystem stations network 

We consider the retrospective simulations of ozone deposition on pre-ICOS stations. The trend 

of stomatal ozone deposition in ICOS sites as modelled by MOCAGE and by the SYNFLUX 

model are presented below. The figure 12 illustrates how the concept of ecozone could be 

applied using the MOCAGE model and RCP 4.5 scenario.  

Figure 12. Projected dry deposition of Ozone across Europe (nmol m-2 s-1). Average hourly values 

(at 4:00 pm during the growing season (JJA). Green dots are ecosystem stations 

registered in the ICOS-RI. Modelling by ARPEGE-ALADIN GCM / RCM and the CHIMERE 

chemistry – transport model under RCP4.5 scenario and ECLIPSE, MRF scenario. Green 

diamonds represent the 66 ICOS ecosystems stations. The red heart refers to the 

ecozone (1) for which O3 dry deposition is a high in summer (10 stations) and has 

increased with time and whereas the blue ellipsoid  refers to the ecozone (3) where O3 

dry deposition is more scattered and would significantly decrease with time (about 22 

stations). Area outside the previous red and blue zones is ecozone (2) that shows no 

substantial change in O3 deposition.  

The future expected tendency across Europe allows to delimit three ecozones as three zones 

extending respectively (fig. 12): 

- from NE-SW from  the Channel and North Sea SW shore (Denmark, The Netherlands,

Belgium , French Normandy, (ecozone  1, in red)

- the Scandinavia , centres of France and Germany (ecozone 2)

- the Alps and Northern Italy (ecozone 3, in blue).

The dry deposition rate of ozone is declining from EZ-1 to EZ-3 and EZ-2. Its shows a temporal 

decline until 2045, although 2035 levels exhibit a secondary peak in EZ-1. The reconstructions 

of ozone deposition by the MOCAGE and SYNFLUX models are consistent with the partitioning 

2015 2025

2035 2045
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of the European area into 3 ecozones. The SYNFLUX simulations shown in fig. 13. are 

partitioned among the three ecozones EZ-1 to EZ-3 described above, and among PFTs. 

Although these data exhibit a substantial scattering, the figure shows the ozone deposition 

evolution has different patterns among ecozones and PFTs. Apart from the coniferous forests 

ENF of the EZ-3 (Alps and Italy), the highest deposition rates observed in early summer were 

generally observed in EZ-1 with a decreasing trend over time. Conversely, the deposition over 

the ENF type ecosystems in EZ-2 almost doubled from 2006 to 2015.  

 

 

 

Figure 13. Reconstruction of ozone dry deposition over ecosystem sites monitored by 

the ICOS stations along the 1995-2015 period with the SYNFLUX model 

(Ducker et al. 2018). The ecosystems are split by PFT (IGPB classification). 

The coloured curves are moving averages for the broadleaved forests (DBF 

in red) and coniferous forests (ENF in black). 

The figure 14 is a focus on simulated time series of Ozone dry deposition onto the French 

stations split among EZ-1 (FR-Gri, FR-Bil, FR-EM2, FR-Lus, Fr-Fon) and EZ-2 (FR-FBn, FR-

Hes, FR-Aur, FR Lam). Two Finnish stations located in EZ-2 are also shown (FI-Var, FI-Sod). 

This figure also confirms the contrast between ecozones 1 and 2 but no clear temporal trend 

is revealed here (note that all the PFTs are pooled here). The stations located in EZ1 received 

through dry deposition twice the amount of ozone received by the stations located in EZ2.   
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Figure 15. Time-series (1995-2015) of monthly average of hourly ozone dry depositions (nmol m-2 s-1) for 

12 ICOS French sites simulated with MOCAGE. 

This example shows that, in the future, the analysis of ecosystem data may benefit from 

clustering stations among ecozones and PFTs to evidence environmental impacts on 

continental ecosystems. In addition, the ecozone concept allows to substitute the space for 

time through synchronic comparison of stations exposed to e.g. contrasted level of pollution. 

Recent comparisons between urban and rural stations during the 2019 lock down period is 

supporting this approach (Fares, unpublished personal communication, 2020). 

5.3. Optimising the sensitivity of in situ networks: a tentative roadmap  

The look up table of network sensitivity and the ecozone concept developed above can support 

the optimisation of the Ecosystem stations network observing the ecosystems in situ. We also 

know from literature that, depending on the driver involved, the PFTs are not equally sensitive. 

Second, the selection of the target variables are key for evidencing environmental impacts.  

Here, with respect to the detection of past and future environmental impacts on ecosystems, 

we propose a general framework that may help to optimise the present ecosystem stations 

network devoted to in situ observations. Starting from the general measurement model (Eq. 

1), the optimisation approach may concern the following network characteristics: 

1. Maximising the impact of drivers (parameter a). The selection of appropriate “target”

variables comes first. It must rely on the knowledge of potential impacts on ecosystems,

their physiology and functioning. When cumulative, the impact to be observed

increases with time, e.g. the atmospheric CO2 concentration effect on GPP, so that the

measurement duration plays obviously a key role: we showed that the CO2 impact may

not be observed in time series shorter than 10 to 15 years.

2. Reducing the measurement uncertainty (parameter ). The variable selection and

metrological practices may both contribute to minimise the uncertainty of the target

variable. Variable with higher accuracy should of course be preferred for detecting a

given impact. For instance, as shown with GPPmax vs GPP, instantaneous values of

flux variables may have different errors than longer time integrals because they can be

sampled repeatedly and have no gap filling errors. In addition, time series showing

higher completeness have lesser gap-filling errors which strongly argues in favor of a

high level of instrument and station maintenance. Reducing the measurement

uncertainty must be based also upon methodological improvements and good

metrological practices that must be applied to every station of the network.
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3. Minimising the background temporal variability (). As far as the detection of temporal 

changes is concerned, the PFT are not all equivalent because ecosystems that are 

heavily manipulated such as crops and cultivated grasslands shows indeed a higher 

temporal variability. Conversely, ecosystems that includes long-lived vegetation with 

slow growth and no or light management are better suited for evidencing subtle 

environmental changes, i.e. the forests, natural grasslands, wetlands and shrublands.  

The clustering of stations within ecozones and the intercomparison of ecozones 

submitted to different levels of exposition allows to reduce the effect of the background 

variability. For instance comparing ecozones, such as neighbouring rural and urban 

stations, may allow to analyse the impact of environmental drivers, e.g. the ozone 

pollution effects, while attenuating the effects of other factors. In other words, 

comparing stations among ecozones is a way to analyse the time course of the 

difference among stations and detect putative anomalies due to a change in a driver in 

the exposed ecozone. 

 

4. Optimising the network design. The look up table synthetizing the sensitivity of possible 

design of ecosystem stations provides a basis for calculating the gain in sensitivity to 

be expected from adding supplementary stations, lengthening the network duration and 

reducing the uncertainty. The figure 5 shows that the marginal gains are not linear and 

that the larger gain are estimated when increasing the network size and duration up to 

minimum threshold. There is also a substantial gain to obtain from improving 

metrological practices, this gain being larger for detecting subtle effects.   

We conclude that there is substantial gains in sensitivity to be expected from the 

networks of ecosystem stations spread over the European continent providing a 

minimum number of 10 stations of the different forest, wetlands and grasslands PFTS 

are operating for a minimum duration of 15 years in each of the main possible 

ecozones. As a first step we would therefore recommend to check:  

 

 the number of stations operating in each PFTs and climate zone and propose 

eventually to add supplementary stations; 

 their interoperability, metrological compatibility and data availability; 

 the completeness of the list of variables measured on site or nearby and ensure 

that potential target variables are monitored. In addition to the existing ICOS 

variables2, some ecophysiological measurements to be operated on sample of 

trees such as xylem sap flow, transpiration, foliage temperature and stomatal 

conductance might be relevant in that respect. Other target variables 

concerning the plant, animal and microbe species diversity, plant traits and 

phenology are prone to rapid changes etc. must be added as well. 

 the environmental drivers involved in a visible future are all monitored and that 

the related data are available according to FAIR principles. This is particularly 

important but also challenging. If the temporal changes in ecosystem 

functioning have to be correctly attributed to causal factors, the biotic and abiotic 

drivers at work must be characterised. Such an appraisal is only feasible 

through a strong co-operation between existing infrastructures and must benefit 

from space-based observations.    

The recommendations 1-4 provide a general framework for optimising in situ observations on 

European ecosystems. This optimisation is envisioned as a virtuous and continuous cycling 

                                                

2 http://gaia.agraria.unitus.it/icos/documents/Variables 
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process as shown below (fig. 15). Such a strategy goes well beyond the only ICOS Ecosystem 

infrastructure. It has to be shared with similar Ecosystem infrastructures such as ICOS-

Atmospheric network, ELTER-RI, DANUBIUS-RI, ICP-Forests, ACTRIS-RI, and Copernicus 

programs. It was beyond the capability of the task 3.5 of the RINGO project to develop a 

complete inventory of stations and scenarios across infrastructures and for the entire Europe, 

check the list measurements in operation, data available and their interoperability. These will 

be partly some outcomes of the ENVRI-FAIR project. Our retrospective analysis, network 

model, and conclusions drawn provide rather a tentative conceptual basis for proposing an 

optimisation of the existing infrastructures in the next European framework, among the lines 

1-4 developed above.

Figure 15. Optimisation scheme for improving the sensitivity of ecosystem observations 

to environmental changes and their attribution to the drivers involved.   

Data used. 

This work used eddy covariance data acquired and shared by the FLUXNET community, 

including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, 

CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, 

NECC, OzFlux-TERN, TCOS-Siberia, and USCCC. The ERA-Interim reanalysis data are 

provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data 
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processing and harmonization was carried out by the European Fluxes Database Cluster, 

AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of 

CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux 

offices. 

FLUXNET2015 dataset : http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/ 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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Abbreviations 

ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure 

CRO Croplands functional type 

CTM Chemistry transport model 

DANUBIUS European research infrastructure on River-Sea Systems (basin, delta and sea) 

DT “Day time” method for partitioning CO2 fluxes 

EC Eddy covariance 

ELTER Long-Term Ecological Research in Europe 

EMEP European Monitoring and Evaluation Programme 

ENF Evergreen needle leaf forest functional type 

EZ Eco-Zone 

FAIR Findable Accessible Interoperable Reusable 

FLUXNET World wide Network of Flux tower 

GCM Global circulation model 

GPP Gross primary production (more often its annual integral in this report) 

GPPmax Annual maximal of half-hourly values of GPP 

ICP-Forests International Cooperative Program on Forests observation 

JJA June-July-August 

LAI Leaf Area Index 

MF Mixed Forest functional type 

NEE Net ecosystem exchange in CO2 

NEON National Ecological Observatory Network 

NT Night-time method method for partitioning CO2 fluxes 

PFT Plant Functional type 

PPFD Photosynthetic Photon Flux Density  

QA/QC Quality assessment / Quality control 

RCP Representative Concentration Pathway (used for climate scenario construction) 

u* friction velocity 

VPD Air water vapour saturation deficit 



29

References 

 (RINGO project publications of the Task 3.5 are bold). 

Baldocchi, D., Falge, E., Wilson, K., 2001. A spectral analysis of biosphere–atmosphere trace 

gas flux densities and meteorological variables across hour to multi-year time scales. Agric. For. 

Meteorol. 107, 1–27. https://doi.org/10.1016/S0168-1923(00)00228-8 

Baldocchi, D., 2008. “Breathing” of the terrestrial biosphere: lessons learned from a global network of 

carbon dioxide flux measurement systems. Aust. J. Bot. 56, 1. https://doi.org/10.1071/BT07151 

Baldocchi, D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the 

atmosphere – the state and future of the eddy covariance method. Global Change Biology 20(12): 

3600-3609.  

Baldocchi B., Chu H., Reichstein M., 2018. Inter-annual variability of net and gross ecosystem carbon 

fluxes: A review. Agricultural and Forest Meteorology. 249, 520-533. 

https://doi.org/10.1016/j.agrformet.2017.05.015. 

Billesbach, D. P. 2011: Estimating uncertainties in individual eddy covariance flux measurements: A 

comparison of methods and aproposed new method, Agr. Forest Meteorol., 151, 394–405. 

Ciais, P., Loustau, D., Bosc, A., Ogée, J., Dufrêne, E., François, C., Viovy, N., and Delage, F. 2011. 

How will the production of French forests respond to climate change? An integrated analysis from 

site to country scale. In: Forests, carbon cycle and climate change, Loustau, D.(Ed.), Quae, Paris. 

Ebel, A., Friedrich, R., Rodhe, H., 1994. Tropospheric Modelling and Emission Estimation: Generation 

of European Emission Data for Episodes (GENEMIS) Project. EUROTRAC Annual Report 1993, 

Part 5. 

Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. 

Clement, H. Dolman, A. Granier, P. Gross, T. Grunwald, D. Hollinger, N. O. Jensen, G. Katul, P. 

Keronen, A. Kowalski, C. T. Lai, B. E. Law, T. Meyers, H. Moncrieff, E. Moors, J. W. Munger, K. 

Pilegaard, U. Rannik, C. Rebmann, A. Suyker, J. Tenhunen, K. Tu, S. Verma, T. Vesala, K. Wilson 

and S. Wofsy, 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. 

Agricultural and Forest Meteorology 107(1): 43-69. 

Fernandez-Martinez, M., Vicca, S., Janssens, I. A., Ciais, P., Obersteiner, M., Bartrons, M., Sardans, 

J., Verger, A., Canadell, J. G., Chevallier, F., Wang, X., Bernhofer, C., Curtis, P. S., Gianelle, D., 

Gruwald, T., Heinesch, B., Ibrom, A., Knohl, A., Laurila, T., Law, B. E., Limousin, J. M., Longdoz, 

B., Loustau, D., Mammarella, I., Matteucci, G., Monson, R. K., Montagnani, L., Moors, E. J., 

Munger, J. W., Papale, D., Piao, S. L., and Penuelas, J.: Atmospheric deposition, CO2, and change 

in the land carbon sink, Scientific Reports, 7, 2017. 

Finkelstein, P. L., and P. F. Sims. 2001. Sampling error in eddy correlation flux measurements. Journal 

of Geophysical Research, 106: 3503-3509. 

Goodrich, J. P., W. C. Oechel, B. Gioli, V. Moreaux, P. C. Murphy, G. Burba and D. Zona (2016). 

"Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance 

of CO2 and CH4 in the harsh Arctic environment." Agricultural and Forest Meteorology 228: 239-

251. 

Hill T., Chocholek M., Clement R., 2017. The case for increasing the statistical power of eddy-

covariance ecosystem studies: why, where and how? Global Change Biol., 23, 2154-2165. 

https://doi.org/10.1071/BT07151


30 

Hollinger, D. Y. and A. D. Richardson (2005). "Uncertainty in eddy covariance measurements and its 

application to physiological models." Tree Physiology 25(7): 873-885. 

Horemans, J. A., I. A. Janssens, B. Gielen, M. Roland, G. Deckmyn, A. Verstraeten, J. Neirynck and 

R. Ceulemans, 2020. Weather, pollution and biotic factors drive net forest - atmosphere exchange

of CO2 at different temporal scales in a temperate-zone mixed forest. Agricultural and Forest

Meteorology 291: 108059.

Josse, B., Simon, P., Peuch, V.-H., 2004. Rn-222 global simulations with the multiscale CTM 

MOCAGE. Tellus 56B, 339e356. 

Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy And G. Wohlfahrt, 

2010. Separation of net ecosystem exchange into assimilation and respiration using a light 

response curve approach: critical issues and global evaluation. Global Change Biology 16(1): 187-

208. 

Lenschow, D. H., Wulfmeyer, V., and Senff, C. 2000: Measuring Second- through Fourth-Order 

Moments in Noisy Data, Journal of Atmosphericand Oceanic Technology, 17, 1330–1347, 

https://doi.org/10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2. 

Loustau, D., Bosc, A., Colin, A., Ogee, J., Davi, H., Francois, C., Dufrene, E., Deque, M., Cloppet, E., 

Arrouays, D., Le Bas, C., Saby, N., Pignard, G., Hamza, N., Granier, A., Breda, N., Ciais, P., Viovy, 

N., and Delage, F.: Modeling climate change effects on the potential production of French plains 

forests at the sub-regional level, Tree Physiol, 25, 813-823, 2005. 

Mauder, M., M. Cuntz, C. Drue, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt and R. Steinbrecher 

2013. A strategy for quality and uncertainty assessment of long-term eddy-covariance 

measurements. Agricultural and Forest Meteorology 169: 122-135. 

Mauder, M. and T. Foken, 2006. Impact of post-field data processing on eddy covariance flux estimates 

and energy balance closure. Meteorologische Zeitschrift 15(6): 597-609. 

Mauder, M., T. Foken, R. Clement, J. A. Elbers, W. Eugster, T. Grunwald, B. Heusinkveld and O. Kolle 

2008. Quality control of CarboEurope flux data - Part 2: Inter-comparison of eddy-covariance 

software. Biogeosciences 5(2): 451-462. 

Mauder, M. and M. J. Zeeman, 2018. Field intercomparison of prevailing sonic anemometers. 

Atmospheric Measurement Techniques 11(1): 249-263. 

Moncrieff, J.B., Malhi, Y., Leuning, R., 1996. The propagation of errors in long-term measurements of 

land-atmosphere fluxes of carbon and water. Global Change Biol. 2, 231-240. 

Moreaux, V., Martel, S., Bosc, A., Picart, D., Achat, D., Moisy, C., Aussenac, R., Chipeaux, C., 

Bonnefond, J. M., Trichet, P., Vezy, R., Badeau, V., Longdoz, B., Granier, A., Roupsard, O., 

Nicolas, M., Pilegaard, K., Matteucci, G., Jolivet, C., Black, A. T., Picard, O., and Loustau, D. 

2020 (a) Energy, water and carbon exchanges in managed forest ecosystems: description, 

sensitivity analysis and evaluation of the INRAE GO+ model, version 3.0, Geosci. Model Dev. 

Discuss., 2020, 1-55, 2020. 

Moreaux, V., Longdoz, B., Berveiller, D., Delpierre, N., Dufrêne, E., Bonnefond, J.-M., Chipeaux, 

C., Joffre, R., Limousin, J.-M., Ourcival, J.-M., Klumpp, K., Darsonville, O., Brut, A., Tallec, 

T., Ceschia, E., Panthou, G., and Loustau, D. 2020 (b). Environmental control of land-

atmosphere CO2 fluxes from temperate ecosystems: a statistical approach based on 

homogenized time series from five land-use types, Tellus B: Chemical and Physical 

Meteorology, 72, 1-25, 2020. 



31 

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, 

S., Valentini, R., Vesala, T., Yakir, D., 2006. Towards a standardized processing of net ecosystem 

exchange measured with eddy covariance technique: algorithms and uncertainty estimation. 

Biogeosciences 3, 571-583. 

Pastorello, G. many more cp-authors and Papale, D., 2020. The FLUXNET2015 dataset and the 

ONEFlux processing pipeline for eddy covariance data, Scientific Data, 7, 225, 2020. 

Pilegaard, K., A. Ibrom, M. S. Courtney, P. Hummelshøj and N. O. Jensen, 2011. Increasing net CO2 

uptake by a Danish beech forest during the period from 1996 to 2009. Agricultural and Forest 

Meteorology 151(7): 934-946. 

Rebmann, C., M. Aubinet, H. Schmid, N. Arriga, M. Aurela, G. Burba, R. Clement, A. De Ligne, G. 

Fratini, B. Gielen, J. Grace, A. Graf, P. Gross, S. Haapanala, M. Herbst, L. Hortnagl, A. Ibrom, L. 

Joly, N. Kljun, O. Kolle, A. Kowalski, A. Lindroth, D. Loustau, I. Mammarella, M. Mauder, L. Merbold, 

S. Metzger, M. Molder, L. Montagnani, D. Papale, M. Pavelka, M. Peichl, M. Roland, P. Serrano-

Ortiz, L. Siebicke, R. Steinbrecher, J. P. Tuovinen, T. Vesala, G. Wohlfahrt and D. Franz 2018. 

ICOS eddy covariance flux-station site setup: a review. International Agrophysics 32(4): 471-+. 

Shao, C. L., J. Q. Chen, C. A. Stepien, H. S. Chu, Z. T. Ouyang, T. B. Bridgeman, K. P. Czajkowski, 

R. H. Becker and R. John (2015). "Diurnal to annual changes in latent, sensible heat, and CO2 

fluxes over a Laurentian Great Lake: A case study in Western Lake Erie." Journal of Geophysical 

Research-Biogeosciences 120(8): 1587-1604. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., 

Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, 

D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, 

J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F.,

Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into 

assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol. 11, 

1424-1439.  

Richardson, A.D., Hollinger, D.Y., Burba, G.G., Davis, K.J., Flanagan, L.B., Katul, G.G., Munger, J.W., 

Ricciuto, D.M., Stoy, P.C., Suyker, A.E., Verma, S.B., Wofsy, S.C., 2006. A multi-site analysis of 

random error in tower-based measurements of carbon and energy fluxes. Agric. Forest Meteorol. 

136, 1-18. 

Salesky, S.T., Chamecki, M. & Dias, N.L. 2012. Estimating the Random Error in Eddy-Covariance 

Based Fluxes and Other Turbulence Statistics: The Filtering Method. Boundary-Layer Meteorol 

144, 113–135. doi:10.1007/s10546-012-9710-0 

Society, E.I., 1994. Generation of European Emission Data for Episodes (GENEMIS) Project. 

EUROTRAC annual report 1993, part 5. Technical report, EUROTRAC. Garmish- artenkirchen, 

Germany. 

Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.-Y., McCarthy, H.R., and co-authors. 2005. 

Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and 

hardwood forests: a wavelet analysis. Tree Physiol. 25, 887–902.  

https://doi.org/10.1093/treephys/25.7.887 

Stoy, P.C., Richardson, A.D., Baldocchi, D.D., Katul, G.G., Stanovick, J., and co-authors. 2009. 

Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across 

multiple time scales. Biogeosciences 6, 2297–2312. https://doi.org/10.5194/bg-6-2297-

2009Teyssedre H. et al. 2007. A new tropospheric and stratospheric Chemistry and Transport 



32 

Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and 

sensitivity to surface processes. Atmos. Chem. Phys., 7, 5815-5860. 

Teyssedre, H., M. Michou, H. L. Clark, B. Josse, F. Karcher, D. Olivie, V. H. Peuch, D. Saint-Martin, 

D. Cariolle, J. L. Attie, P. Nedelec, P. Ricaud, V. Thouret, R. J. Van Der A, A. Volz-Thomas and F.

Cheroux, 2007. A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-

Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface

processes. Atmospheric Chemistry and Physics 7(22): 5815-5860.

Wang, H. J., W. J. Riley and W. D. Collins, 2015. Statistical uncertainty of eddy covariance CO2 fluxes 

inferred using a residual bootstrap approach. Agricultural and Forest Meteorology 206: 163-171. 

Wesely M.L., Hart R.L. (1985) Variability of Short Term Eddy-Correlation Estimates of Mass Exchange. 

In: Hutchison B.A., Hicks B.B. (eds) The Forest-Atmosphere Interaction. Springer, Dordrecht. 

https://doi.org/10.1007/978-94-009-5305-5_35 

Wofsy, S.C., M. L. Goulden, and J. W. Munger. 1993. Net exchange of CO2 in a mid-latitude forest, 

Science, 260, 1314-1317. 

Wutzler, T., A. Lucas-Moffat, M. Migliavacca, J. Knauer, K. Sickel, L. Sigut, O. Menzer and M. 

Reichstein 2018. Basic and extensible post-processing of eddy covariance flux data with 

REddyProc. Biogeosciences 15(16): 5015-5030. 

Zaehle, S., et al. (2014). Evaluation of 11 terrestrial carbon–nitrogen cycle models against 

observations from two temperate Free-Air CO2 Enrichment studies. New Phytologist 202(3): 803-

822. 

 Communications related to the RINGO Task 3.5.

Loustau D., Moreaux M.  2020. Detecting together what you cannot see alone: the ICOS station 

network case. European Research Course on Atmospheres. Introductory keynote. Grenoble 

13 Janvier 2020. CNRS- Université de Grenoble Alpes. 40pl 

Moreaux V., G. Panthou, B. Josse, K. Lamy, G. Bert, D. Papale, D. Loustau. 2020. Can we see it? 

How in situ observation networks may detect environmental impacts on ecosystem 

biogeochemistry. ICOS international Conference, Utrecht, 15-17 September 2020. Oral 

communication and poster. 

Moreaux V.,  Gielen B., Papale D., Loustau. 2019. Optimising observation networks for the early 

detection and unequivocal attribution of environmental effects on European forests. IUFRO 

International Congress, Curitiba, Brazil, 29 sept. 5th Oct 2019. 20 pl. 

https://www.iufro.org/fileadmin/material/events/iwc19/iwc19-abstracts.pdf 

Moreaux V. , Gielen B., Papale D., Loustau D. 2019. Enabling the observation networks of  

European Ecosystems to see the unseen: The sentinel network concept. ICOS 8th General 

Assembly – information day. 21st May, Saclay, France. 

https://doi.org/10.1007/978-94-009-5305-5_35


33 

Appendix. 

Appendix. 1.  

Table A1. Lists of the sites in FLUXNET2015 database 

site_id PFT site_id PFT site_id PFT site_id PFT 

AR-SLu MF BR-Sa3 EBF CN-Sw2 GRA FI-Let ENF 

AR-Vir ENF CA-Man ENF CZ-BK1 ENF FI-Lom WET 

AT-Neu GRA CA-NS1 ENF CZ-BK2 GRA FI-Sod ENF 

AU-Ade WSA CA-NS2 ENF CZ-wet WET FR-Fon DBF 

AU-ASM ENF CA-NS3 ENF DE-Akm WET FR-Gri CRO 

AU-Cpr SAV CA-NS4 ENF DE-Geb CRO FR-LBr ENF 

AU-Cum EBF CA-NS5 ENF DE-Gri GRA FR-Pue EBF 

AU-DaP GRA CA-NS6 OSH DE-Hai DBF GF-Guy EBF 

AU-DaS SAV CA-NS7 OSH DE-Kli CRO IT-BCi CRO 

AU-Dry SAV CA-Qfo ENF DE-Lkb ENF IT-CA1 DBF 

AU-Emr GRA CA-SF1 ENF DE-Obe ENF IT-CA2 CRO 

AU-Fog WET CA-SF2 ENF DE-RuR GRA IT-CA3 DBF 

AU-Gin WSA CA-SF3 OSH DE-RuS CRO IT-Col DBF 

AU-How WSA CH-Cha GRA DE-Seh CRO IT-Cp2 EBF 

AU-RDF WSA CH-Dav ENF DE-SfN WET IT-Cpz EBF 

AU-Rig GRA CH-Fru GRA DE-Spw WET IT-La2 ENF 

AU-Stp GRA CH-Lae MF DE-Tha ENF IT-Lav ENF 

AU-Tum EBF CH-Oe1 GRA DK-Eng GRA IT-MBo GRA 

AU-Wac EBF CH-Oe2 CRO DK-NuF WET IT-Noe CSH 

AU-Whr EBF CN-Cha MF DK-Sor DBF IT-PT1 DBF 

AU-Wom EBF CN-Cng GRA DK-ZaF WET IT-Ren ENF 

AU-Ync GRA CN-Din EBF DK-ZaH GRA IT-Ro1 DBF 

BE-Bra MF CN-Du2 GRA ES-LgS OSH IT-Ro2 DBF 

BE-Lon CRO CN-Ha2 WET ES-LJu OSH IT-SRo ENF 

BE-Vie MF CN-HaM GRA FI-Hyy ENF IT-Tor GRA 

JP-SMF MF CN-Qia ENF FI-Jok CRO JP-MBF DBF 

NL-Hor GRA US-ARM CRO US-Myb WET US-Twt CRO 
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Table A1. Lists of the sites in FLUXNET2015 database (continued) 

site_id PFT site_id PFT site_id PFT site_id PFT 

NL-Loo ENF US-Blo ENF US-Ne1 CRO US-UMB DBF 

NO-Adv WET US-Cop GRA US-Ne2 CRO US-UMd DBF 

RU-Che WET US-GBT ENF US-Ne3 CRO US-Var GRA 

RU-Cok OSH US-GLE ENF US-NR1 ENF US-WCr DBF 

RU-Fyo ENF US-Ha1 DBF US-PFa MF US-Whs OSH 

RU-Ha1 GRA US-KS2 CSH US-Prr ENF US-Wi3 DBF 

SD-Dem SAV US-Los WET US-SRC MF US-Wi4 ENF 

SN-Dhr SAV US-Me2 ENF US-SRM WSA US-Wkg GRA 

US-AR1 GRA US-Me6 ENF US-Syv MF ZA-Kru SAV 

US-AR2 GRA US-MMS DBF US-Ton WSA ZM-Mon DBF 

Figure A1. Number of ecosystem stations of the Fluxnet 2015 data set providing 

flux data from 1991 to 2014 and for three durations. Stations are pooled 

by PFT.  

ENF CRO DBF GRA MF EBF WSA OSH WET CSH
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Appendix 2. 

Figure A2. Linear regression of GPP over time by PFT for 4 year- (above diagrams) and 21-year  (below 

diagram)  long time series. 
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Appendix 3. 

Table A2. Stations of the FLUXNET2015 database used for calculating the GPPmax time 

series  

BE-Lon CRO BE-Lon CRO DK-Sor DBF IT-SRo ENF

CH-Oe2 CRO CH-Oe2 CRO IT-Col DBF NL-Loo ENF

DE-Geb CRO DE-Geb CRO DE-Tha ENF RU-Fyo ENF

DE-Kli CRO DE-Kli CRO FI-Hyy ENF US-Blo ENF

FR-Gri CRO FR-Gri CRO NL-Loo ENF US-Me2 ENF

IT-BCi CRO IT-BCi CRO BE-Vie MF US-Me3 ENF

US-ARM CRO IT-Noe CSH US-NR1 ENF

IT-Noe CSH DK-Sor DBF AT-Neu GRA

CA-Oas DBF IT-Col DBF CH-Oe1 GRA

DE-Hai DBF US-Oho DBF DE-Gri GRA

DK-Sor DBF FR-Pue EBF IT-MBo GRA

IT-Col DBF GF-Guy EBF NL-Hor GRA

IT-Ro1 DBF CA-TP1 ENF US-IB2 GRA

IT-Ro2 DBF CA-TP3 ENF BE-Bra MF

US-Oho DBF CA-TP4 ENF BE-Vie MF

FR-Pue EBF CH-Dav ENF CA-Gro MF

GF-Guy EBF CZ-BK1 ENF CH-Lae MF

IT-Cpz EBF DE-Tha ENF ES-LJu OSH

MY-PSO EBF FI-Hyy ENF

CA-Obs ENF IT-Lav ENF

CA-Qfo ENF NL-Loo ENF

CA-TP1 ENF RU-Fyo ENF

CA-TP2 ENF US-Me2 ENF

CA-TP3 ENF US-NR1 ENF

CA-TP4 ENF DE-Gri GRA

CH-Dav ENF IT-MBo GRA

CZ-BK1 ENF BE-Bra MF

DE-Tha ENF BE-Vie MF

FI-Hyy ENF CA-Gro MF

FR-LBr ENF CH-Lae MF

IT-Lav ENF ES-LJu OSH

2004-2007 2004-2013 1996-2013 2004-2007 (continued)
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Appendix 4. 

Figure A3. Error on GPPmax values by PFT calculated from 4, 10 and 18 year-long time series. Note the y 

axis scale is changed among plots. 

4 years 

10 years 

18 years 
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Appendix 5. 

Figure A4. Linear regression of GPPmax over time by PFT along 4 year – and 18 year-long time series. 
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