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The world is going on a CO, diet...

* Nisbet and Weiss (2010): reducing fossil fuel emissions using ‘bottom-up’
inventory reporting is analogous to “dieting without weighing oneself”.

* ‘Bottom-up’ methods can be out-

dated and inaccurate, with
. . 1001 High emissions leading 3.2-5.4°C
unknown Uncerta|nty estlmates- oy todangemuswarming } S
<, 80-
* ‘Top-down’ methods can provide § T
alternative option. g s R
.g 2015 Baseline
.. @ o ik N 2.0-3.7°C
* For CO,, however, this is £ 40| Projection @ Myee i
complicated because large natural S |
fluxes make it difficult to isolate Deresging amiscions .
H H H tible with
anthropogenic emissions. 0T 2°C warming limit__J 09-03°c
_20 Data: CDIAC/GCP/IPCC/Fuss et al 2014 - -

1980 2000 2020 2040 2060 2080 2100
© Global Carbon Project, 2015



The CO and *CO, method

ffCOZ(CO) — measure RCO ackgroun co

where R, is the CO:CO, ratio for fossil fuel combustion.

Rco depends on fuel type:

R 5 to 25 ppb ppm™* <2 to >100 ppb ppm™*

* Reo is variable and not well known.

» ffCO,(CO) is ‘calibrated’ using *CO, data — this helps, but there are still
issues:

* E.g. CO has natural sources and sinks (especially in the summer).




The **CO, nuclear power plant bias

Absolute ratio of nuclear bias to fossil fuel-derived CO,

)

Graven and Gruber, ACP (2011)

* 14C0O, measurements are severely affected
by some types of nuclear power plant
emissions.

* particularly a problem in Eastern US/Canada, Western
Europe and Japan.
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Figure from Angelina Wenger
(University of Bristol)



Using Atmospheric Potential Oxygen (APO)
APO = 0, - 1.1 x CO,

* APO is a tracer invariant to terrestrial biosphere Og and CO; exchange.

p Omeasured — AP Obackground

A
ffCO,(APO) = -
APO

where R4 is the APO:CO, ratio for fossil fuel combustion.
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* Main advantage over CO and 14C0; method:
* Rppp has a much smaller range than R,

* likely to be more precise (and possibly more accurate).

Reo 5 to 25 ppb ppm™? <2 to >100 ppb ppm?

Relative R, and R,p, ranges

Raro 0.2 to 0.5 mol mol* 0.1 to 0.9 mol mol*




Example: using data from Norfolk, UK (summer 2014)

* Baselines determined using ‘Rfbaseline’ .
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Results: uncertainty analysis

* ffCO,(APO) and ffCO,(CO) uncertainties determined by combining
measurement, baseline and emission ratio uncertainties:

Measurement uncertainty +13% +4.1%

+73% +22%

Emission ratio uncertainty

+78% 36 %

* APO method is significantly more precise than CO method.




Results ffCC)2 in Norfolk
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Results: ffCO, in Norfolk
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Accuracy: sensitivity to different emission ratio sources

* Investigated using 4 different R,,; and R, sources:
* Time varying ratios (as before, using EDGAR, COFFEE and NAME).
* Fixed ratios (0.3 mol mol for R, and 5 ppb ppm™ for R.,).
» 14CO, calibrated ratios.
- Measured ratios.

* Results: Much smaller ffCOz range for APO method.

CO ffCO, range APO ffCO, range

1to >100 ppm! 1to 20 ppm

» ffCO, from 14CO, still underestimated, even though corrected for nuclear
influences.

* Had to use unrealistically high R.; and R,y values.
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Quantifying ffCO, throughout the year at WAO
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Quantifying ffCO, throughout the year at WAO
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ffCO, and Bio CO, covariance correlation coefficient = -0.23



Total CO,/Bio CO, (ppm)

Quantifying ffCO, throughout the year at WAO
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Diurnal variability in ffCO, and bio CO, at WAO in 2012
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Diurnal variability in ffCO, and bio CO, at WAO in 2012
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e Growing season start and end 2012: ~06 April and 22 October
e Growing season start and end 2013: ~07 April and 02 November
e UK autumn temperatures in 2012 were ~1°C below 1981-2010 average



Limitation: O, precision
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Limitation: O, precision
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Limitation: O, precision
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Conclusions and future outlook

* APO is a currently under-exploited tool for atmospheric verification of CO,
emissions.

* We are able to use APO to separate biosphere and fossil fuel CO, signals
throughout the year at WAO, UK, despite the station’s rural location.
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* Next steps:
* Forward-modelling of
inventory emissions
* Urban APO measurements

Urban - vertical extent?
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Uncertainty (2 sigma, %)

* APO top-down method
uncertainty potentially compares
favourably with bottom-up oh et et rr:a(sq.zj) A
inventory uncertainty.

Global

Andres et al. ACPD 2016



