INFLUENCE OF GROUND WATER TABLE DEPTH ON METHANE EMISSIONS FROM TREE STEMS IN A FORESTRY-DRAINED FEN

MARI PIHLATIE¹, IIKKA HAIKARAINEN¹, ELISA HALMEENMÄKI¹, PETTERI PYYKKÖ¹, KATERINA MACHACOVA², MIKA KORKIAKOSKI³, KARI MINKKINEN⁴, PAAVO OJANEN⁵, TIMO PENTTILÄ⁵, ANNALEA LOHILA³

> ¹University of Helsinki, Department of Physics, ²Global Change Research Centre, Brno, Czech Republic ³Finnish Meteorological Institute, Helsinki, Finland, ⁴University of Helsinki, Department of Forest Sciences, ⁵Natural Resources Institute Finland.

MOTIVATION

Upland forest are a sink of CH₄ (methanotrophs) Despite this, above canopy fluxes show CH₄ emissions. **Can trees be the missing source?**

Among the natural sources, the contribution of vegetation to the global CH_4 budget is the least well understood (Carmischael et al., 2014).

CAN PINE TREES BE THE MISSING SOURCE OF CH₄?

HIGH STEM CH_4 EMISSIONS FROM BIRCH IN WET CONDITIONS

Pangala et al. (2013): similar flux rates from wetland trees in Southeast Asia

FIELD EXPERIMENT: THE EFFECT OF GROUND WATER TABLE ON TREE AND SOIL CH₄ EXCHANGE

CH₄ FLUX MEASUREMENTS

June-August 2016

Manual stem chambers (UGGA, ultraportable greenhouse gas analyzer, LGR) - 5 chambers / tree species / site Automatic soil chambers (Picarro G1130)

- 6 automatic chambers / site

Stem chamber profiles3 chamber heights / tree(birch)

SIGNIFICANT SOIL UPTAKE FROM THE CONTROL AREA

SMALL STEM EMISSIONS BIRCH FROM PARTIALLY CUT FOREST

BIRCH AND SPRUCE STEM FLUXES DIFFER IN HEIGHT

Haikarainen et al., in preparation

BIRCH AND SPRUCE STEM FLUXES DIFFER IN HEIGHT

Haikarainen et al., in preparation

TAKE HOME AND FUTURE PLANS

We are not talking about tera grams of CH₄ from boreal trees, but about a significantly decreased CH₄ sink => global importance!

More measurements are needed to understand the mechanisms and drivers of CH_4 emissions from trees => for modelling

Our measurements continue including seach for methanogens and methanotrophs, and study of tree anatomical differences

The Emil Aaltonen Foundation

SUOMEN AKATEMIA FINLANDS AKADEMI ACADEMY OF FINLAND

THANK YOU!

ILMATIETEEN LAITOS Meteorologiska institutet Finnish meteorological institute

ICOS INTEGRATED CARBON OBSERVATION SYSTEM

