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Regional carbon budgeting

• Some issues with mesoscale models 

• Where uncertainties meet regional budgets: future 
satellite requirements 

• What has changed since Paris? 

• Closed country budgets?



The data fusion system we 
all aim to have

Gerbig et al. (2009)



But we want more…

Reuter et al., 2016



The bottom up balance



How good are we at that?



Continental carbon balance…

Dolman et al, 2012



Source – IPCC AR5 

•  Large discrepancies between bottom-up models and atmospheric inversions  
•  Tropics and high latitudes regions have almost no observation 
•  Large uncertainties ~100% on regional budgets ! 

The global carbon cycle can only be 
understood by measuring regional fluxes 
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Chapter 6 Carbon and Other Biogeochemical Cycles
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Figure 6.15 |  (Top) Bar plots showing decadal average CO2 fluxes for 11 land regions (1) as estimated by 10 different atmospheric CO2 inversions for the 1990s (yellow) and 
2000s (red) (Peylin et al., 2013; data source: http://transcom.lsce.ipsl.fr/), and (2) as simulated by 10 dynamic vegetation models (DGVMs) for the 1990s (green) and 2000s 
(light green) (Piao et al., 2013; data source: http://www-lscedods.cea.fr/invsat/RECCAP/). The divisions of land regions are shown in the map. (Bottom) Bar plots showing 
decadal average CO2 fluxes for 11 ocean regions (1) as estimated by 10 different atmospheric CO2 inversions for the 1990s (yellow) and 2000s (red) (data source: http://
transcom.lsce.ipsl.fr/), (2) inversion of contemporary interior ocean carbon measurements using 10 ocean transport models (dark blue) (Gruber et al., 2009) and (3) surface 
ocean pCO2 measurements based air-sea exchange climatology (Takahashi et al., 2009). The divisions of 11 ocean regions are shown in the map.
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Country scale  budgets 

good match with observed concentrations that exhibit large
diurnal variability.
[4] Until recently, most regional scale inversions have

worked with “synthetic data” to test the performance of the
inversion methods and the measurement network [e.g.,
Zupanski et al., 2007; Carouge et al., 2010; Gourdji et al.,
2010; Tolk et al., 2011]. Such work is obviously of consid-
erable importance, but as synthetic flux fields form the basis
of these methods it remains speculative to which extent the
results can be generalized toward the real world. To test
whether such regional methods produce credible results
when applied to real observed data requires an independent
comparison with observed flux data. The lack of appropriate
data has unfortunately often presented a significant hurdle for
such validation. For instance, the inversions by Göckede
et al. [2010] use observed concentration data from two tow-
ers, but lack an independent validation of the calculated
fluxes, while Rivier et al. [2010] evaluate their results against
independent biosphere model calculations. Recently, as more
appropriate flux data have become available, such data have
been used for validation: Schuh et al. [2010], Broquet et al.
[2011], and Lauvaux et al. [2012] evaluate fluxes against
tower measurements, and Lauvaux et al. [2009] also employ
additional aircraft measurements.
[5] In this study, we extend that analysis further from the

campaign scale to the seasonal scale by applying two state-
of-the-art inversion methods to obtain the CO2-fluxes for the
Netherlands for the year 2008. The inversion schemes we use
are based on previous theoretical and synthetic work by Tolk
et al. [2009, 2011]. A relatively dense and well-maintained
network of four towers is used for the CO2 concentration
measurements. A large amount of flux measurements by

aircraft (O. S. Vellinga et al., Calibration and quality assur-
ance of flux observations from a small research aircraft,
submitted to Journal of Atmospheric and Oceanic Technol-
ogy, 2012) is available for all the seasons in 2008 to validate
the calculated fluxes. This setup also offers the opportunity to
test the usefulness of the existing concentration measurement
network for regional inversions.

2. Methods

[6] The setup of the modeling work is, to a large extent,
similar to that in the previous studies: Tolk et al. [2009] for
the forward modeling and Tolk et al. [2011] for the inversion
modeling. A Bayesian inversion scheme that uses an
ensemble Kalman filter with prior fluxes, is applied to esti-
mate the surface CO2 fluxes. Based on the comparison
by Tolk et al. [2011], the two best performing inversion
setups (“parameter” and “pixel” inversion) were selected. In
contrast to the previous synthetic data study, the inverse
modeling is performed with real CO2 concentration mea-
surements. No “synthetic truth” is involved. Another differ-
ence with the Tolk et al. [2009, 2011] studies is that the
calculations are performed with season-dependent model
parameters, rather than stationary model parameters.
[7] The next paragraphs present a summary of the model-

ing system used, and document the specific changes com-
pared to the previous studies. The observation methods are
also described.

2.1. Transport Model and Background Fields
[8] The transport model used in this study is the Regional

Atmospheric Modeling System (RAMS), specifically ver-
sion B-RAMS-3.2, with some adaptations described in Tolk
et al. [2009]. The domain includes the Netherlands and
some of its surroundings (Figure 1). For this study, a single
grid with 10 km resolution is used. Reanalysis data from
ECMWF (which we imported at resolution 0.5!) are used for
initialization and boundary conditions for the meteorological
fields, where nudging is applied only close to the boundaries.
Sea surface temperatures are also obtained from the ECMWF
reanalysis.
[9] The CO2 transport is calculated simultaneously with

the atmospheric modeling (Eulerian method). For initial and
boundary conditions of the CO2 mixing ratios, optimized
fields at 1! " 1! resolution from CarbonTracker Europe
[Peters et al., 2010] were used. Ensemble modeling is
applied: One hundred three-dimensional CO2-fields are
simulated simultaneously, each of them driven by its own
surface flux field (see hereafter).

2.2. Surface Modeling
[10] The surface model LEAF-3 is part of RAMS, and is

used to calculate the meteorological fluxes from the land
to the atmosphere. Land use is specified according to the
Corine2000 database, and Leaf Area Index (LAI) according
to MODIS data (monthly values). The domain contains six
different land use classes, as shown in Figure 1. The crop-
covered pixels are classified according to the absence
(“crops-1”) or presence (“crops-2”) of significant areas of
natural vegetation. Subgrid patches of grassland and maize
are more abundant in land use class crops-2 than in land use
class crops-1. The latter is characterized by more large-scale

Figure 1. Dominant land use class per pixel (crops-2 has
more natural vegetation mixed with the crops than crops-1).
Triangles indicate concentration measurements: Lutjewad
(north), Cabauw (west), Loobos (center), and Hengelman
(east). Region shown is longitude 2.56!E–8.44!E, latitude
50.45!N–54.05!N.
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suggest, however, a lower sensitivity specifically for the
coastal station Lutjewad. A further observation is that the fit
of the CO2 mixing ratios is practically always better for the
pixel inversion than for the parameter inversion. This is to be
expected, as the pixel inversion has much more degrees of
freedom.
[28] Nevertheless, the posterior concentrations still differ

considerably from the observations. The main contributions
to this difference stem from (1) transport errors, and (2) errors
in the flux model. The synthetic runs of Tolk et al. [2011] for
the same network had much smaller RMS of the concentra-
tion difference. Since these runs used the same transport
model, but strongly different flux models, for the forward run
(creating synthetic concentrations) and the inversion, they

show that the inversion can correct the errors caused by a
wrong flux model, provided the transport model is accurate.
Hence, it is likely that the decreased performance with real
data is not due in the first place to errors in the flux model, but
to the difference between the real and modeled transport. It is
well known [e.g., Gurney et al., 2002; Stephens et al., 2007]
that current schemes for transport modeling have imperfect
treatment of vertical transport in the atmospheric boundary
layer.

3.2. Flux Estimates and Uncertainty
[29] We now turn to the comparison of the best estimates of

the fluxes for both inversion methods. Figure 4 gives an
overview of the flux-averages (terrestrial biogenic part) for

Figure 3. The same as Figure 2 but for station Lutjewad.

Figure 2. Example of observed and modeled CO2 concentration time series: Cabauw, summer. (left) Day-
time average, with root-mean square values for the differences between observed and modeled values.
(right) Distribution of residuals (hourly daytime values), with means and standard deviations.
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Contributions of fossil and 
land use

Tolk et al., 2009



Comparing with aircraft 
fluxes

results for autumn and winter were obtained with a reduced
network (no Hengelman data). Since the parameters are
spatially constant for each region, the error reduction map
reflects the land use map. For the same reason, the error
reduction is for most eco-regions much stronger than for the
pixel inversion (for which there are much more unknowns to
constrain). This strong reduction of the error per pixel is an
artifact of the parameter method. The error reduction is pri-
marily calculated for the vegetation parameters, and causes
an appropriate error reduction for the average fluxes over the
ecoregions to which these parameters apply. However,
owing to the low number of basic functions, the small spread
of the averages is automatically translated to a small spread
per pixel, causing an unrealistically low uncertainty in the
flux per pixel. The other (pixel) inversion method, on the
other hand, does not suffer from this artifact.
[37] The finer structure of the error reduction close to the

observation sites shows details which are not always obvious
to explain. Cabauw and Loobos have an overlapping region
of influence, which is mainly restricted to grassland, which
limits the effective radius. For Hengelman the region of
influence is larger, because of the extensive crops-1 region
there. It is remarkable that the influence of Hengelman is
most conspicuous on the eastern side, whereas the prevailing
wind direction is from the west.
[38] From Figure 6, Lutjewad is seen to have the smallest

influence on the error reduction. The impact of the coastal
station Lutjewad on error reduction depends on the frequency
of southerly wind, which is locally on average about 30% of
the time [van der Laan et al., 2009b]. The southerly winds
are less prevalent in spring than in summer and autumn 2008
(see Table 2).

3.3. Comparison With CO2 Flux Measurements
By Aircraft
[39] The aircraft flux measurements are summarized in

Table 3. The winter measurements were restricted to
December 2008, as the flights started in March 2008, and the
inversion results are confined to 2008. The error in the
observed fluxes is estimated as 15% based on comparison of
simultaneous flights over SW France in 2007 (O. S. Vellinga,
unpublished data). Figure 7 shows an example of one day of
flux measurements by aircraft, compared to modeled poste-
rior total fluxes, found by both parameter and pixel inversion.
Note that the simulated fluxes pertain to the same places and
times as the observations, so that unnecessary aggregation
uncertainties are avoided.
[40] Figure 7 illustrates the problems pertaining to the

comparison of calculated and observed fluxes on the short-
term. First, continuous observations exist only for brief
intervals. Second, the simulated and observed time series

have different shapes, because the observations are strongly
influenced, on the short-term, by random effects like turbu-
lence and intermittent clouds, which are in the simulations
either averaged out, or not well timed. As a consequence of
this randomness, it is practically impossible to assess the flux
difference between ecoregions by looking at data from single
days.
[41] Since it appears rather meaningless to compare

observed fluxes, averaged over 2 km, with our posterior
fluxes, we compare in the following only averaged flux
values which belong to the same trajectory and season.
Figure 8 shows these average flux values for the observa-
tions, priors and the two posteriors. As indicated earlier (at
the start of the discussion of Figure 4), the standard errors
which are given for the posterior fluxes may underestimate
the uncertainty, as they do not account for systematic errors
which are inherent to the inversion methods. Within the
enhanced uncertainty of both our estimates and the aircraft
data, the observations confirm, in most cases, the shift toward
much larger uptake (for spring to autumn) that is produced by
the inversions. This increases the confidence in the ability of
the inversion system to improve on prior estimates, and also
demonstrates the value of our assimilation approach in inte-
grating different types of information of the regional carbon
cycle.
[42] Figure 9a shows the root-mean square differences

between the simulated (prior and both posteriors) and the
observed average fluxes, for all seasons. The employed
averages are taken immediately from Figure 8. In the

Table 2. Wind Direction Frequencies (Days per Season per
90 Degree Sector) in 2008 According to the Daily Vector-Averages
of Station De Bilt, in the Center of the Netherlandsa

NE SE SW NW

Spring 32 15 27 18
Summer 8 12 51 21
Autumn 23 13 49 6
Winter 14 15 55 7

aData obtained from Royal Netherlands Meteorological Institute (KNMI).

Table 3. Number of Days With Observations for Each Flight
Trajectory, per Season

Spring Summer Autumn Winter

East 5 2 2 2
North 5 2 1 1
West 3 3 3 2
South 3 3 2 2
Center 3 4 2 2
Polder 3 3 4 2

Figure 7. Example of one day of flux measurements by air-
craft, compared to the simulated total flux (prior and two pos-
teriors), for the same points of the trajectory.
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Inland waters
• Input Rhine at border TOC 2.5 

TgC yr-1

• Evasion Rhine 34.6 Gg C yr-1

• Evasion Scheldt 0.136 Tg C yr-1

• Lake IJssel outflow is 133 Gg C 
yr-1; evasion is 20 Gg C yr-1 

(scaled)

• Others (18% of the surface area 
of the country is water) 0.27 Tg 
C yr-1

• Total  0.46 Tg C yr-1

Sources: Abril, 2002; Hofmann et al., 2008; Bareta, Ruardi, 1989



The GHG Balance of the Netherlands
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Atmosphere: sources of 
error

Gerbig et al., 2009



Synthetic	study

Tolk et al., 2011 ACPD

Different inversion  
schemes tested with 
different “priors” 

Lack of improvement in  
mean NEE for most  
land-use classes  

Models are 
overconfident (model 
structure important) 

Scaling NEE from 
prescribed 
spatiotemporal patterns  
most susceptible to 
these errors  
  



Structure: correlation length 
scales

Kountouris et al, 2015



Mesoscale inversions



Uncertainty reduction at 
country scale

No “observations’ 
in Germany

Impact wider than just  
surrounding areas



Bridging scales

Global scaleCountry scale Field scale 

Uncertainty margin

Uncer
tai

nty 
marg

in

Top
 Dow

n

Bottom Up

Fl
ux

Slide Sander Houweling



Combined    uncertainty

Bridging scales

Country scale Field scale Global scale

Fl
ux



Combined    uncertainty

Bridging scales

Country scale Field scale 

Sa
te

llit
es

 Surface networks

Global scale

Fl
ux



The	increasing	importance	of	
fossil	fuel	emissions

The	2σ	uncertain8es	in	fossil	
fuel	emissions	have	
increased	from	0.3	Pg	C	yr−1	
in	the	1960s	to	almost	1.0	
Pg	C	yr−1	during	the	2000s	
due	to	differences	in	
na8onal	repor8ng	errors	
and	differences	in	energy	
inventories.

Ballantyne	et	al.,	2015

A. P. Ballantyne et al.: Audit of the global carbon budget 2569

direct comparison with other terms in the global C budget,
molar mixing ratios of atmospheric CO2 are converted to a
mass of petagrams (Pg = 1015g) C using the conversion fac-
tor 2.124 Pg C ppm�1 (Sarmiento et al., 2010).

2.1.1 Spatial error component of the atmospheric CO2
growth rate

Most of the error associated with calculating the changes in
atmospheric CO2 concentration from year to year is due to
seasonal heterogeneities in the atmospheric mixing of atmo-
spheric CO2 and the spatial unevenness of the global observ-
ing network (http://www.esrl.noaa.gov/gmd/ccgg/). In fact,
through cross-validation of individual sites using the entire
global network (Masarie and Tans, 1995), errors associated
with the sampling network have been estimated to be about
1.2 Pg C , which makes it challenging to substantiate annual
growth rates that may only vary between 1 and 2 Pg C yr�1

during early parts of the observational record (Ballantyne et
al., 2012; Conway et al., 1994; Keeling et al., 1995).

To assess how much "C varies as a function of the nonran-
dom spatial distribution of the global observation network,
we first subset the global network for “background” sites in
the marine boundary layer (MBL; see Fig. 2) that are less
affected by local anomalies in fossil fuel emissions and up-
take (Masarie and Tans, 1995). To assess how biases in the
MBL network may affect "C , bootstrap simulations were per-
formed by simulating 100 alternative observation networks
consisting of 40 sites that are resampled with replacement
from sites located in the MBL. The only geographic con-
straint on resampling is that at least one site from the trop-
ics, Arctic, Antarctic, North Pacific, and North Atlantic must
be included in each simulated network. Since 1980, d̂C

dt has
been calculated from all 100 simulated observation networks
drawn from the MBL sites.

2.1.2 Temporal error component of the atmospheric
CO2 growth rate

Because complete mixing of atmospheric CO2 may take
more than a year, errors in dC

dt are not independent from
year to year. In fact, errors in MDJ ("MDJ) values show
considerable interannual positive autocorrelation, such that
"MDJ(t) = 0.244 "MDJ(t�1)+0.086"MDJ(t�2)+"(t), where "(t)

represents random error in the current year (Ballantyne et al.,
2012). Because MDJ values that are biased high lead to dC

dt
estimates that are biased high in the previous year and biased
low in the subsequent year, this leads to a negative autocor-
relation, such that "C(t) = �0.413"C(t�1) � 0.166"C(t�2) �
0.085"C(t�3) + "(t). Over the period prior to 1980, d̂C

dt was
calculated from atmospheric CO2 observations at Mauna Loa
and the South Pole (MLOSPO) and "C was estimated from
the "MDJ autocorrelated noise, as described above, normal-
ized to a standard deviation of 0.24 ppm based on the period
of observational overlap between MLOSPO and the MBL.

Figure 2. The global observation network used in calculating the
annual atmospheric CO2 growth rate. The annual growth rate of at-
mospheric CO2 is calculated from resampling sites in the global
network located in the marine boundary layer (black points; top
panel). The annual growth rate since 1980 is calculated from the
entire marine boundary layer, while the growth rate prior to 1980
is calculated from observation sites at Mauna Loa, Hawaii, USA,
and the South Pole, Antarctica. The mean atmospheric growth rate
is illustrated as a thick black line and growth rates calculated from
the 100 simulated sampling networks are illustrated by the thin grey
traces.

Monthly mean MLOSPO values prior to 1974 were calcu-
lated from Scripps Institution of Oceanography data (Keel-
ing et al., 2005), and monthly mean MBL values were calcu-
lated from data collected by the National Oceanic and Atmo-
spheric Administration’s Earth System Research Laboratory
(http://www.esrl.noaa.gov/).

www.biogeosciences.net/12/2565/2015/ Biogeosciences, 12, 2565–2584, 2015
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Fig. 3. A. Global network of CO2 surface stations with flask sampling (red symbols) and 5 

continuous measurement sites (blue symbols). The data from these sites and from additional 6 

stations can be found at WMO GAW World Data Center for Greenhouse Gases 7 

(http://ds.data.jma.go.jp/gmd/wdcgg/). B. Locations of the Total Column Carbon Observing 8 

Network by year 2012. These stations are essential for satellite column CO2, CH4 measurement 9 

validation. C. Location of vertical profile sites, where GHG mixing ratios are measured by 10 

dedicated aircraft on a typical monthly basis (pink symbol), and location of passenger 11 

instrumented aircraft program flights CONTRAIL and CARIBIC (blue lines). 12 
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Figure 3. (A) Global network of CO2 surface stations with flask
sampling (red symbols) and continuous measurement sites (blue
symbols). The data from these sites and from additional stations
can be found at WMO GAW World Data Center for Greenhouse
Gases (http://ds.data.jma.go.jp/gmd/wdcgg/). (B) Locations of the
Total Column Carbon Observing Network by year 2012. These sta-
tions are essential for satellite column CO2 and CH4 measurement
validation. (C) Location of vertical profile sites, where GHG mix-
ing ratios are measured by dedicated aircraft on a typical monthly
basis (pink symbol), and location of passenger instrumented aircraft
program flights CONTRAIL and CARIBIC (blue lines).

America and Europe, the commercialization of environmen-
tal monitoring is a new concept that has to be evaluated over
an extended period. But large gaps in atmospheric observa-
tions still exist in northern Eurasia, Asia, Africa, and South
America because very few research sites exist.

A key element of surface and aircraft in situ atmospheric
observation programs is their unique capability to closely
link all observations to a single CO2 and CH4 dry air mole
fraction scale defined by the WMO. However, while most re-
search groups make a concerted effort to calibrate their mea-
surements to the WMO scale very frequently are obtained
via regular analysis of standard gases. The current situation
is that there is no regulatory quality-assurance system en-
suring the monitoring of the compatibility and traceability
of measurements at each site to the WMO scale. Ongoing
voluntary-based comparisons of both standard gases and en-
vironmental air samples provide means to assess the quality
of linkages between given sites or laboratory measurements
to the international scales. If the effort to link measurements
from multiple networks is to succeed, it is of the utmost im-
portance that observed CO2 and CH4 concentration differ-
ences can be attributed unequivocally to physical processes
(and not to differences in calibration).

3.3.2 Satellite observations of column CO2 and CH4
mixing ratio

Satellite remote sensing of column CO2 and CH4 mixing ra-
tio with global coverage offers options to complete atmo-
spheric observations over regions with too low surface net-
work density (Fig. 4). Progress has been achieved in the
exploitation of existing multipurpose sensors and towards
the design of dedicated GHG satellite instruments. Accu-
rate quantification of regional-scale GHG surface fluxes is
however challenging, as demanding relative accuracy re-
quirements have to be met, especially for CO2 (Bréon and
Ciais, 2009). The initial version of the GOSAT (Greenhouse
gases Observing SATellite) operational total column dry air
mole fraction XCO2 and XCH4 retrieval algorithm suffered
from significant biases and large scatter when compared
to ground-based Total Carbon Column Observing Network
(TCCON) observations, but this has been improved (Yoshida
et al., 2013). Consequently, some preliminary CO2 flux es-
timates have been produced (Maksyutov et al., 2013; Basu
et al., 2013). For methane the situation is better than for
CO2, but satellites still need to be used with in situ data to
infer methane surface fluxes, as shown by Bergamaschi et
al. (2009) using XCH4 retrievals obtained from the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartog-
raphY (SCIAMACHY) together with flask measurements.

Existing/near-launch instruments for column GHG mix-
ing ratios make measurements either in the thermal infrared
spectral domain, with peak sensitivity in the middle tro-
posphere: Atmospheric Infrared Sounder (AIRS), Infrared
Atmospheric Sounding Interferometer (IASI), and Thermal
Emission Spectrometer (TES), Greenhouse gases Observing
SATellite (GOSAT), or in the solar infrared domain: SCIA-
MACHY (2002–2012), Greenhouse Gas Observing Satellite
(GOSAT), Orbiting Carbon Observatory-2 (OCO-2), with a
more uniform sensitivity to CO2 and CH4 throughout the
atmospheric column, including the boundary layer (Fig. 4).
The thermal infrared sounders are not well adapted to infer-
ring surface fluxes as illustrated by Chevallier et al. (2009a),
in contrast to near-infrared sounders. Despite this drawback,
several groups have used thermal infrared sounders to pro-
vide information on column variability (Crevoisier et al.,
2004; Chahine et al., 2008; Xiong et al., 2008).

The precision and accuracy of space-based remotely
sensed GHG column concentration products vary with in-
strument and sampling strategy. Unlike in situ sensors, the
concentrations of gases in the measurement path cannot be
controlled. Thus the direct calibration to the WMO mole
fraction scale cannot be established for space-based GHG
column concentration. An indirect data evaluation can be
made using TCCON total column measurement network
data, which themselves can be evaluated against WMO mole
fraction scale airborne in situ vertical profiles (Wunch et al.,
2010, 2011a). For middle-tropospheric CO2 column abun-
dances from infrared sounders, precision estimates of 1 ppm

www.biogeosciences.net/11/3547/2014/ Biogeosciences, 11, 3547–3602, 2014
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Figure 4. Comparison of land-use–land-change emission inven-
tories from 1960 to 2010. The three inventories compared are
the bookkeeping approach (Houghton et al., 2012; black), model-
derived estimates including historical land use (Stocker et al., 2013:
blue), and model-derived estimates, including historical land use
and nitrogen cycling (Yang et al., 2010; red). Thin grey traces rep-
resent the Monte Carlo simulations of uncertainty for the land use
emission estimates (N = 3 ⇥ 500 = 1500).

sistence value is also arbitrary, it was selected based on the
Food and Agricultural Organization’s forestry statistics that
are updated every 5 years. Therefore, land use emission es-
timates are predicted into the future 4 years and then cor-
rected retroactively in the fifth year (Friedlingstein et al.,
2010). Here we consider three independent estimates of EL
derived from three different approaches: (1) the bookkeep-
ing method based on forestry statistics (Houghton, 1995), (2)
a model-derived estimate based on historical land use maps
(Stocker et al., 2011), and (3) a model-derived estimate in-
cluding historical land use as well as nitrogen cycling (Yang
et al., 2010). Although more EL estimates exist, we have se-
lected three representative estimates of EL covering a range
of possible approaches for inclusion in our error analysis
framework (Fig. 4).

2.4 Estimating net ocean and land uptake with
uncertainty

2.4.1 Estimating net global C uptake

In order to estimate changes in the net global C uptake, we
focused on two diagnostic variables of the global C cycle.
First we calculated net global C uptake by simply rearranging
Eq. (1) to solve for

6N = d̂C
dt

� 6E , (7)

where we calculate net global uptake simply as the difference
between the annual atmospheric growth rate and the sum of
net emission fluxes to the atmosphere. Because we have de-
fined the C mass balance with respect to the atmosphere, a
net loss from the atmosphere corresponds with negative 6N

as a result of increased C uptake by the biosphere. In order to
calculate relative changes in global C uptake efficiency, we
also calculated the airborne fraction (AF), according to

AF = d̂C
dt

/6E, (8)

where an increase in AF would indicate an increase in the
proportion of emissions remaining in the atmosphere and
perhaps diminished C uptake efficiency by the biosphere.

To incorporate the error from different combinations of
our fossil fuel emission simulations (EFX) and our land use
emission simulations (ELX), we devised an emission sce-
nario matrix:

6E(FX,LX) =
"

EF1 + EL1 EF1 + EL2 EF1 + EL3
EF2 + EL1 EF2 + EL2 EF2 + EL3
EF3 + EL1 EF3 + EL2 EF3 + EL3

#

, (9)

where 6E(FX,LX) is a flexible framework that can accommo-
date any number of combinations of emission simulations. In
our analysis we only consider three EFX estimates and three
ELX estimates in our 3 ⇥ 3 matrix for a total of nine differ-
ent combinations of fossil fuel and land use emissions. Each
combination consists of the sum of 500 fossil fuel emission
simulations and 500 land use emission simulations with their
associated spatial and temporal error spanning 52 years (ie.
1959 to 2010), for a grand total of 4500 ⇥ 52 simulations of
6E(FX,LX) (Fig. 5). In order to calculate 6N and AF, we ran-
domly drew from our dC

dt simulations to perform 4500 calcu-
lations of 6N and AF spanning the period of 1959 to 2010.
We calculated 6N and AF using two approaches; one using
the sum of all emissions as shown in the emission scenario
matrix (Eq. 9) and the other using just EF simulations to as-
sess how sensitive global C uptake is to these two different
CO2 emission scenarios.

2.4.2 Partitioning C uptake between the land and the
ocean

In order to partition the global net C uptake flux between
net land (i.e., NL) and net ocean (i.e., NO) uptake, we re-
lied on ocean biogeochemical models that have been con-
strained by observations (Le Quéré et al., 2013) . In partic-
ular, these ocean biogeochemical models have been normal-
ized to changes in atmospheric O2 / N2, which provide an
independent estimate of ocean C uptake mostly expressed on
decadal timescales. We extended this logic by using O2 / N2
measurements to estimate the error in estimates of ocean C
uptake in these ocean biogeochemical models:

N̂O = NO ⇥ (1 + "O), (10)
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Table 1. Decadal changes in variables of the global C budget. Reported are decadal means for the atmospheric growth rate, land use emissions,
fossil fuel emissions, global uptake, the airborne fraction, net ocean uptake, and net land uptake. The first number below the mean (in
parentheses) is the mean of the decadal standard deviations that provides a measure of our ability to detect a change in that variable. The
second number below the mean (in parentheses) is the standard deviation of the decadal means that provides a measure of variance in that
variable.

Decadal mean values and standard deviations
Variable 1960s 1970s 1980s 1990s 2000s

Atmospheric CO2 (PgCyr�1; @C/@t) 1.75 2.72 3.42 3.18 4.14
Mean of standard deviations (0.60) (0.61) (0.22) (0.18) (0.16)
Standard deviation of the means (0.61) (0.91) (1.21) (1.40) (0.82)

Land use emissions (PgCyr�1; EL) 1.16 1.28 1.42 1.15 0.89
Mean of standard deviations (0.76) (0.64) (0.65) (0.67) (0.63)
Standard deviation of the means (0.25) (0.11) (0.13) (0.23) (0.12)

Fossil fuel emissions (PgCyr�1; EF) 3.09 4.76 5.53 6.45 7.89
Mean of standard deviations (0.15) (0.24) (0.30) (0.35) (0.47)
Standard deviation of the means (0.44) (0.41) (0.33) (0.24) (0.69)

Net global uptake (PgCyr�1; 6N ) �2.51 �3.32 �3.61 �4.38 �4.64
Mean of standard deviations (0.83) (0.76) (0.52) (0.56) (0.50)
Standard deviation of the means (0.52) (0.84) (1.13) (1.37) (0.98)

Airborne fraction (AF) 0.42 0.45 0.48 0.42 0.47
Mean of standard deviations (0.16) (0.11) (0.05) (0.04) (0.03)
Standard deviation of the means (0.12) (0.14) (0.16) (0.18) (0.10)

Net ocean uptake (PgCyr�1; NO) �1.11 �1.43 �1.79 �2.07 �2.21
Mean of standard deviations (1.31) (1.32) (1.33) (1.35) (1.39)
Standard deviation of the means (0.24) (0.16) (0.06) (0.09) (0.19)

Net land uptake (PgCyr�1; NL) �1.39 �1.89 �1.78 �2.35 �2.46
Mean of standard deviations (1.56) (1.51) (1.43) (1.46) (1.43)
Standard deviation of the means (0.56) (0.90) (1.17) (1.48) (1.06)

all variance in d̂C
dt was slightly reduced when calculated from

only two sites, d̂C
dt estimates show a similar increase in stan-

dard deviation from the 1960s (� = 0.58 Pg C yr�1) through
the 1990s (� = 1.26 Pg C yr�1). Thus the apparent increase
in carbon cycle variability over the last 50 years seems to
be robust and not an artifact of the expanding global atmo-
spheric CO2 observation network.

In the early part of the observation record, errors associ-
ated with estimating d̂C

dt were one of the main contributors
to uncertainty in calculating global C uptake; however, as
the precision of estimating d̂C

dt has increased, their contribu-
tion to global C uptake uncertainty has been reduced. In fact,
in the 1960s errors in the atmospheric CO2 growth rate ac-
counted for roughly 40 % of the uncertainty in global C up-
take; in contrast, in the 2000s errors in the atmospheric CO2
growth rate accounted for only about 10 % of the uncertainty
in global C uptake (Fig. 11). Thus, errors in estimating the
annual growth rate at the beginning of the period of obser-

vation (e.g., 1960s) made it difficult to determine if d̂C
dt was

in fact statistically distinguishable from 0 (Fig. 2); however,
continued measurements have revealed that not only is d̂C

dt
positive, but it is clearly accelerating as a result of increased
emissions.

3.2 Increasing uncertainty in fossil fuel emission
estimates

As of 2010, more than 90 % of the total CO2 emissions to
the atmosphere were derived from fossil fuel combustion or
cement production (Fig. 1); therefore, slight errors in EF can
have significant impacts on C uptake estimates by the land
and ocean. While fossil fuel emissions have increased by a
factor of 3.6 over the past 50 years, the absolute errors in
fossil fuel emissions have increased by a factor 4.5 over the
same period of time (Fig. 3), suggesting that fossil fuels ac-
count for an increasing proportion of the atmospheric CO2
burden but that the precision of our EF estimates is actually
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While	uncertain8es	in	
growth	rate	have	gone	
down,	those	in	land	use	
have	remained	the	same
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Two key issues…

• Renewed emphasis on fossil emission sources  

• Requires rethinking of strategy (scaling)



Are satellites the answer?



 Carbon cycle and climate

HR satellite is needed to detect carbon-cycle anomalies

Heat wave induced CO2 

Future OCO-2 

GOSAT 

August 2003



Estimating CO2 fluxes at country-scale

Error reduction after one 
week of observations for 
black-bordered regions 
using a meso-scale model 

Note that smaller regions 
are more difficult. 

HR Sat better due to 
combination of large 
swath (200 km), small 
samples (2×3 km2), high 
accuracy.
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GOSAT OCO-2 HR Sat

Broquet et al



 
Separating CO2 fluxes at country-scale

Attempt to separate total 
flux in biogenic and 
anthropogenic components 

Control vector of 44 flux 
budgets per day: 
11 land areas (no ocean)   
2 periods per day 
2 type of fluxes 

Prior uncertainty (weekly): 
30% anthropogenic 
50% biogenic

GOSAT OCO-2 HR Sat

HR satellite data provides the potential to separate anthropogenic and 
biogenic emissions on country scale 
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Berlin 
• Reported emission of 46 Mt CO2 per year 
• Targeted uncertainty 7 Mt CO2/yr (single 

overpass estimate) 

Estimating CO2 fluxes at 
local-scale

Bovensmann et al



Conclusions
• To be able to detect reductions in fossil fuel we 

need to refocus (observations, models) 

• Substantial errors in setup, a priori structure of the 
mesoscale inversions (very little real inversions) 

• At the country scale the uncertainties are enlarged, 
but this may provide the key to future development: 
a country scale RECAPP



	The	Global	Observing		
System	for	Climate:		
Implementa;on	Needs	



What is needed
• Extend in situ observations through ICOS, and 14C 

efforts 

• Provide harmonised bottom up data for countries 
within Europe and outside 

• Do HR mesoscale inversions (set up model inter 
comparisons  à la Transcom) 

• Identify bottlenecks, uncertainties etc. through 
thorough analysis of bottom up and top down



Credit: Victor & Kennel, Nature Climate Change, 2014.
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