On the need for assuming imperfect prior knowledge of emissions in regional CO2 inversions

Christoph Gerbig, Panagiotis Kountouris, Fabio Boschetti, Christian Rödenbeck (MPI-BGC, Jena), Thomas Koch (DWD), Ute Karstens (ICOS-CP, Lund)

Motivation

- Current regional inverse modeling of CO₂:
 - inverse transport modeling targeted biosphereatmosphere exchange only
 - fossil fuel emissions assumed much better known than biospheric fluxes
 - uncertainty in transport models more important (Peylin et al., 2011)
 - ICOS atmospheric network not targeted at emissions

Motivation

- Future regional inverse modeling of CO₂:
 - political pressure from stakeholders to assess emissions
 - INDCs (Intended Nationally Determined Contributions) need regular verification
 - more ICOS stations with emission influence
 - spatial resolution of inversion transport models increases
 - uncertainty in increases with decreasing scales for spatiotemporal disaggregation
 - observations ,,see" these uncertain fluxes

Approach

- Assessment of differences in various emission datasets
- Analysis of resulting emission signals at atmospheric stations
- Inverse transport modeling of biosphereatmosphere exchange using different emission datasets

Emissions at 1 min. resolution (IER Stuttgart)

Emissions at 1 min. resolution (IER Stuttgart)

Spatial distribution of CO2 emissions

90% largest Emissions at 1 min. resolution (IER Stuttgart)

90% largest Emissions at 1 min. resolution (IER Stuttgart)

Spatial distribution of CO2 emissions

STILT simulations of CO₂ fossil fuel signals

- STILT-ECMWF using 0.25 deg. resolution met fields
- STILT Footprints to provide sensitivity of observations to upstream emissions
- Linking footprints to different emission inventories at different spatial resolution
 EDGAR v4.3 + IER (D + F) blend
 @ 80, 10, 6, and 1.5 km
 ODIAC 2015a @ 0.75 km

STILT simulations of CO₂ fossil fuel signals

- STILT-ECMWF using 0.25 deg. resolution met fields
- STILT Footprints to provide sensitivity of observations to upstream emissions
- Linking footprints to different emission inventories at different spatial resolution
 EDGAR v4.3 + IER (D + F) blend
 @ 80, 10, 6, and 1.5 km
 ODIAC 2015a @ 0.75 km

CO₂ fossil fuel signals @ different resolutions afternoon values (11:00-17:00) only 80km 10km FZJ (DE) 80km 6km 10km 200 6km 1.5km - - -1.5km 100 regional CO₂ emission signal [ppm] 0 Feb May Jan Mar Jul Sep Oct Dec Apr Jun Aug Nov CBW (NL) 80km 10km 200 6km 1.5km - - -100 Feb Aug Jan Mar Apr May Jun Jul Sep Oct Nov Dec HEI (DE) 80km 10km 200 6km 1.5km . . . 100 Feb May Oct Jan Mar Apr Jun Jul Aug Sep Nov Dec KIT (DE) 80km 10km 200 6km - - -1.5km 100 Feb Mar May Jan Apr Jun Jul Aug Sep Oct Nov Dec HPB (DE) 80km 10km 200 - -6km 1.5km - - -100 0 Jan Feb Mar May Jun Jul Aug Sep Oct Apr Nov Dec MPI-BGC

ICOS science conference, Sept. 27-29 2016, Helsinki

CO₂ fossil fuel signals @ different resolutions afternoon values (11:00-17:00) only 80km 10km FZJ (DE) 80km 6km 10km 200 . . 6km 1.5km ... 1.5km 100 Jan Feb Jul Sep Oct Mar Apr May Jun Aug Nov Dec CBW (NL) 80km 10km 200 6km 1.5km 100 Feb Mar Jan Apr May Jun Jul Aug Sep Oct Nov Dec HEI (DE) 80km 10km 200 6km 1.5km ... 100 Feb Jan May Jul Aug Oct Mar Jun Sep Nov Dec Apr KIT (DE) 80km 10km

6km

Dec

80km 10km

6km

Dec

1.5km

...

- ----- 1.5km

Nov

May

Apr

Feb

Mar

ICOS science conference, Sept. 27-29 2016, Helsinki

Jun

Jul

Aug

Sep

Oct

CO₂ fossil fuel signals @ different resolutions

ICOS science conference, Sept. 27-29 2016, Helsinki

ICOS science conference, Sept. 27-29 2016, Helsinki

ICOS science conference, Sept. 27-29 2016, Helsinki

CO2 fossil fuel signals @ different resolutions

MPI-BGC Jeno

CO2 fossil fuel signals @ different resolutions

ICOS science conference, Sept. 27-29 2016, Helsinki

CO₂ fossil fuel signals @ different resolutions Future ICOS station Juelich

CO ₂ emissions in 2009 : (www.carma.org)					
Weissweiler					
19.200.000 Tons CO2/yr					
Niederaussem					
26.300.000 Tons CO2/yr					
Neurath					
90.650. 000 Tons CO2/yr					
Frimmersdorf					
2.119.600 Tons CO2/yr					

CO₂ fossil fuel signals @ different resolutions Future ICOS station Juelich

CO₂ fossil fuel signals @ different resolutions Future ICOS station Juelich

CO ₂ emissions in 2009 : (www.carma.org)					
Weissweiler					
19.200.000 Tons CO2/yr					
Niederaussem					
26.300.000 Tons CO2/yr					
Neurath					
90.650.000 Tons CO2/yr					
Frimmersdorf					
2.119.600 Tons CO2/yr					

Posterior fluxes June 2014

using EDGAR v4.1 + BP2012

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

Posterior fluxes June 2014

using EDGAR v4.3 + BP2014

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

Posterior fluxes June 2014

using EDGAR v4.3 + BP2014 + IER (D + F)

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

Posterior fluxes January 2014

using EDGAR v4.1 + BP2012

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

Posterior fluxes January 2014

using EDGAR v4.3 + BP2014

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

Posterior fluxes January 2014

using EDGAR v4.3 + BP2014 + IER (D + F)

biosphere-atmosphere flux [PgC/a]

ICOS science conference, Sept. 27-29 2016, Helsinki

Inversion system:

	using EDG BP20	AR v4.1 + 012	using EDGAR v4.3 + BP2014	using EDGAR v4.3 + BP2014 + IER (D + F)
PRIOR a NEE (G1	annual tC/a):	-1.24	-1.24	-1.24
POSTER NEE (G1	RIOR annual tC/a):	-0.49	-0.53	-0.74
annual fo emissior	ossil fuel ns (GtC/a):	1.374	1.416	1.416
Fraction ,,recove	n of ∆FF red" as NEE:		95%	595%

ICOS science conference, Sept. 27-29 2016, Helsinki

MPI-BGC

lena

Synergy of tracers

• shared atmospheric transport

- shared atmospheric transport
- shared fuel types

- shared atmospheric transport
- shared fuel types
- shared emission sectors

Synergy of tracers

EDGAR v4.3 + BP2014 + IER (D + F)

tracer correlations for sub-grid variations

- Linking footprints to emission inventories for CO₂, CO and CH₄
- different spatial resolution 80km, 10km, 6km, 1.5km
- Difference to 80km

Conclusion/Outlook

- Emissions have increasing uncertainty with decreasing spatial disaggregation scale, leading to potential bias in retrieved biosphere-atmosphere exchange
 - in combination with increasing number of stations under influence from emissions
 - in combination with increasing resolution of inverse transport models
- Potential benefit from multi-species inversions
 - provide a clearer link between inverse modeling and UNFCCC reporting (sectors, fuel types)
 - shared uncertainties (shown here: influence from sub grid variability)
- Implementation @ ICOS-CP (Carbon Portal):
 - STILT footprints for ICOS atmospheric stations
 - EDGARv4.3 + BP2015 emission estimates (sector- + fuel-specific)

