Estimating ocean acidification variables from underway fCO₂ measurements:

a case study from western Norwegian fjords

Aragonite saturation states and pH in western Norway fjords: seasonal cycles and controlling factors, 2005-2009

A. M. Omar^{1,2}, I. Skjelvan¹, S.R. Erga³, A. Olsen²

^{1:} Uni Research Climate, ^{2:} Bjerknes Centre for Climate Research, ^{3:} University of Bergen, Bergen, Norway.

Ocean Science

12, 937-951, 2016

Outline

Oceanic inorganic carbon system

• Some definitions & processes

Estimating OA variables from underway fCO₂

Case study from the Norwegian fjords

- Study area and data
- Spatiotemporal variations
- Drivers of seasonal changes
- Summary

Further work

- Analyses of existing data
- Monitoring of OA in the fjords

Oceanic inorganic carbon system

Minimum two (plus ancillary variables: T, S, nutrients) are needed for a complete description

Uptake of CO_2 reduces **pH** and saturation state (Ω) for calcium carbonate = Ocean Acidification (OA).

Estimating OA variables from underway fCO₂

Water column data

Low-frequency, but fully determine the inorganic carbon system (two or more variables) e.g. Glodap v2, http://cdiac.ornl.gov

High-frequency data, but only underway fCO₂, SST (& SSS) http://www.socat.info/

- Use water column data to identify TA = *a*SSS+*b* and *a*pply to UW SSS
- Combine resulting 'UW' TA with UW fCO₂ & SST to determine the complete oceanic CO₂-system (e.g. *Lauvset et al, 2015. Biogeosciences*)

Study are and data

Carboocean (UW): UW fCO2 & SST, 2005-2009

CarboSchools (CS):

CTD bottle samples for DIC, Alk, S & T, 2007-2010

Biological station (RF):

CTD bottle samples for S & T, 2007-2008

Omar et al 2016

Results: spatiotemporal variations

- Strong seasonal and spatially coherent variations
- Changes in pH and Ω_{Ar} de-coupled.
- High Ω_{Ar} and intermediate pH values during summer. low Ω_{Ar} and pH values in winter.
- Typical IAVs of Ω_{Ar} and pH 0.015 and 0.1, respectively.
- No clear trend

Results: drivers of seasonal changes

Seasonal changes in DIC and TA were the most important drivers of pH and Ω_{Ar} changes while SST also was an important driver for pH.

Summary

- We have been able to estimate the seasonal changes and drivers of pH and Ω_{Ar} across western Norwegian fjords using underway fCO₂ and SST data combined with data from research cruises and empirical relationships.
- During summertime the study area embodied warm surface water with high Ω_{Ar} and intermediate pH values. During winter, the surface water was cold with low Ω_{Ar} and pH values.
- Seasonal changes in DIC and TA were the most important drivers of pH and Ω_{Ar} changes. Additionally, SST was an important driver for pH.
- We have shown that the strong correlations of pH and Ω_{Ar} with fCO₂ and fCO_{2@meanSST}, respectively, provide an approach to interpolate pH and Ω_{Ar} values both seasonally and spatially.

Monitoring of OA in the fjords

Analyses of North Sea data (ongoing)

Water column data: 2001/2002/2005/2008/2011 (Helmuth Thomas and co-workers)

Underway data (MS Nuka Arctica): 2005-2016

AO1

AO1 Abdirahman Omar, 26-09-16

This work would not have been possible without the generosity and help of the liner company SeaTrans AS and the captains and crew of MS Trans Carrier.

